# Appendix E Geotechnical Study

# GeoPentech



July 25, 2017 Project No. 17064A

Mr. Will Cipes Carmel Partners 530 Wilshire Boulevard, Suite 203 Santa Monica, California 90401

# SUBJECT:GEOTECHNICAL REVIEW<br/>PROPOSED DEVELOPMENT AT<br/>223 - 241 N. JACKSON ST. (JACKSON STREET APARTMENTS)<br/>GLENDALE, CALIFORNIA

Dear Mr. Cipes:

GeoPentech, Inc. (GeoPentech) is pleased to submit to Carmel Partners (Carmel) the results of our geotechnical review of the property located at 223 - 241 N. Jackson St. in Glendale, California. The location of the site is shown on Figure 1. This letter report is prepared in accordance with GeoPentech's proposal dated June 7, 2017 and your authorization dated July 5, 2017. We previously submitted a draft report dated July 14, 2017. This report has been revised to include laboratory test results which were in progress at the time of submitting the draft report. No changes were made to our findings and the key geotechnical considerations except the section on corrosion potential of soils was updated to reflect results of the corrosion testing.

The purpose of this geotechnical review is to assist Carmel with the due diligence process in connection with acquisition of the property for development of a residential apartment complex. The following sections present our understanding of the project, scope of work, and summary of our findings.

#### **PROJECT UNDERSTANDING**

Our understanding of the project is based on the exchange of emails on June 5 and 6, 2017. We have also been provided with an aerial map of the site and a conceptual site plan prepared by Architects Orange (AO) dated June 2, 2017, as well as a Phase I Environmental Site Assessment report dated July 10, 2015 and a Geophysical Survey and Limited Soil Assessment report dated August 7, 2015.

As shown on Figure 2a, the site is bounded by E. California Avenue to the north, E. Wilson Avenue to the south, N. Jackson Street to the east and N. Kenwood Street to the west. As also shown on Figure 2a, the project site is currently occupied by several Glendale Unified School District buildings. Two single story classrooms, a two-story apartment complex, and an asphalt paved parking lot are located near the intersection of E. California Avenue and N. Jackson Street, in the northern portion of the site. To the south of this area are Buildings A and B, bounded to east by N. Jackson Street and to the west by the Allen F. Daily High School. The remainder of the project site to the south of Buildings A and B consist of an asphalt paved parking lot. The northeast corner of the project site has

a surface elevation of approximately 575 feet Mean Sea Level (MSL) and the southwest corner has an approximate elevation of 563 feet MSL.

Based on the Conceptual Site Plan shown on Figure 2b, we understand that a 265-unit apartment complex, consisting of 5-levels of Type III construction above ground, and a Type I, 5-level parking structure with one partial subterranean level is currently being considered. Furthermore, we understand that the purpose of the geotechnical services is to assist Carmel Partners with conducting due diligence for the site.

#### **SCOPE OF WORK**

GeoPentech's scope of work for the geotechnical review consisted of the following:

- Review of available previously completed reports by Andersen Environmental for the subject project site; the Phase I Environmental Site Assessment report, dated July 10, 2015; the Geophysical Survey and Limited Soil Assessment report, dated August 7, 2015; and the published geological, geotechnical, and seismic information.
- Field Exploration Program drilling three (3) hollow-stem-auger borings to depths ranging between 32 and 51½ feet, at the approximate locations shown on Figure 2a, to investigate the stratigraphy of the subsurface soils, and obtain intact and bulk samples for observation and laboratory testing.
- Laboratory testing of soil samples obtained during the field exploration program for determination of static physical soil properties including evaluation of the corrosion potential.
- Evaluation of the site subsurface conditions, geologic setting and identification of general seismic conditions and geologic-seismic hazards affecting the site and their possible impact on the proposed development.
- Engineering evaluation of the geotechnical data to support our findings and review.
- Preparation of this letter report.

#### FIELD EXPLORATION AND LABORATORY TESTING

Field explorations consisted of advancing three borings to depths varying between 32 and 51½ feet below the existing ground surface. The approximate locations of the borings are indicated on Figure 2a. The borings were drilled using 8-inch diameter hollow stem auger drilling equipment. During drilling, soil samples were obtained at approximate intervals ranging between 2.5 and 5-foot using either a Standard Penetration Test (SPT) sampler or a Modified California sampler. Bulk soil samples were also obtained at certain depths in all three boreholes. The work was performed under the supervision of a geologist who monitored the drilling operations and prepared a field record of soils observed and drilling conditions. The drilling was subcontracted to Martini Drilling, who provided all drilling equipment, crew, and supplies. Details of the explorations and the logs of the borings are presented in Appendix A.

Laboratory tests were performed on selected samples obtained from the borings to aid in the classification of the soils and to evaluate the pertinent engineering properties of the soils. The

following tests were performed at the laboratory facilities of AP Engineering & Testing, Inc. in Pomona, California:

- Moisture content and dry density
- Sieve analysis and passing No. 200 sieve
- Direct shear
- Compaction
- R-value
- Corrosion

The tests were performed in general accordance with applicable procedures of the American Society for Testing and Materials (ASTM) and the State of California Department of Transportation, Standard Test Methods (DOT CA). The in-place dry density and moisture content values as well as the percentage of fines (material passing the No. 200 sieve) of the samples tested are presented in the boring logs, Appendix A. The complete results of laboratory tests along with the July 24, 2017 letter of AP Engineering are presented in Appendix C. GeoPentech reviewed the results of the laboratory testing performed at AP Engineering and accepts their use in this report.

#### **SUMMARY OF FINDINGS**

#### 1.0 SUBSURFACE CONDITIONS

A geologic map of the site area by the California Geologic Survey (2012) is shown on Figure 3a, and the corresponding legend with the geologic unit descriptions is shown on Figure 3b. As shown on Figure 3a, the site is underlain by Quaternary-aged old alluvial fan sediments. Based on our current investigation, the alluvium is locally covered by artificial fill. A generalized geologic cross-section through the site is shown on Figure 4. The location of this geologic cross-section is shown on Figure 2a.

The Phase I Site Assessment report (Andersen Environmental, 2015) indicates that the site is not currently located within an oil field as determined by the State of California, Department of Conservation, Division of Oil, Gas, & Geothermal Resources (DOGGR).

Andersen Environmental performed an investigation to identify locations of current or former buried structures based on information obtained during their Phase I Environmental Site Assessment indicating the possible presence of a 550-gallon underground storage tank (UST) in the immediate area south of Building B (Andersen Environmental, 2015). Their investigation included two (2) hand auger borings and a geophysical survey utilizing electromagnetic induction (EM), magnetometry, ground-penetrating radar (GPR), and utility location equipment; the locations of the hand auger borings and survey area are shown on Figure 2a. The geophysical survey identified two GPR anomalies, which are likely areas of disturbed soils and possible former locations of USTs, and one EM anomaly, which may be an existing UST. These anomalies are presented in Appendix B and their locations identified in Figure 5. The presence of a buried structure at the location of the EM anomaly was confirmed by the hand auger borings, which were performed within the boundaries of the EM anomaly and which encountered refusal around 2.5 to 3 feet below ground surface (bgs). The contents of the potential current/former USTs are not known, although analysis of soil samples taken at 15 feet bgs from the three borings near the anomalies did not detect the presence of petroleum hydrocarbons.

Prior boring logs and geophysical data prepared by Andersen Environmental are presented in Appendix B. Approximate locations of the prior borings are shown on Figures 2a and 5.

The following subsections describe the subsurface soil and groundwater conditions at the site.

#### 1.1 Artificial Fill

Artificial fill was encountered within borings B-1, B-2 and B-3 to depths of approximately 3, 7, and 5 feet, respectively. The fill generally consisted of Silty Sand (SM) with gravel and occasional debris. Note that, as in other nearby sites in Glendale, deeper fill, including debris, may be present within other areas of the site.

#### 1.2 Alluvium

Alluvial soils predominantly consisting of medium dense to very dense sands (SM, SP, and SW) with gravel and cobbles were encountered beneath the fill. A layer of loose material was encountered in borings B-2 and B-3 at a depth of about  $12\frac{1}{2}$  and 10 feet bgs, respectively. The SPT blow counts measured in the alluvium ranged from 8 to over 50 blows per foot. Borings B-2 and B-3 hit refusal within the alluvium at depths of approximately 32 and 38 feet, respectively.

#### 1.3 Groundwater

Groundwater was not encountered during drilling of the borings to the maximum  $51\frac{1}{2}$ -foot depth explored. Based on a review of the Seismic Hazard Zone Report for the Los Angeles 7.5-Minute Quadrangle (CGS, 1998), the historically highest groundwater is anticipated to be at a depth of about 70-80 feet beneath the site.

#### 2.0 GEOLOGIC CONDITIONS

#### 2.1 Faults

The project site is located within a seismically active region of southern California. Recent examples of the seismic activity in the region include the 1987 Whittier earthquake and the 1994 Northridge earthquake. Figure 6 shows the site location relative to mapped active faults in the region, as identified by the USGS (2009). No known active faults cross the site, nor is the site located in a currently established Alquist-Priolo (AP) Special Studies Zone based on a review of the Burbank Quadrangle Zones of Required Investigation Map dated March 25, 1999. Significant faults near the site that displace the ground surface include the Verdugo fault (about 1 km northeast); the Raymond fault (about 3 km south); the Hollywood fault (about 4 km southwest); the Santa Monica fault (about 18 km southwest); and the Newport-Inglewood fault (about 19 km southwest). The San Andreas Fault is located approximately 45 km to the northeast.

Potentially active blind thrust faults are also believed to exist in the region. These blind thrust faults are not expressed at the surface, but are inferred to exist based on indirect information, such as seismicity and folded stratigraphy. Recognition of the existence of blind thrust faults in the region was largely triggered by the occurrence of the 1987 Whittier Narrows earthquake. As shown on Figure 6, the site is located on the hanging wall of the potentially active Elysian Park

and Puente Hills (LA) blind thrust faults. Based on the estimated depth of the fault plane, the closest distance from the site to the Elysian Park and Puente Hills (LA) fault planes beneath the site is approximately  $6\frac{1}{2}$  and 9 km, respectively.

#### 2.2 Liquefaction Potential

According to the CGS Earthquake Zones of Required Investigation of the Burbank Quadrangle (1999), the site is not located within an area identified as having a potential for liquefaction. This classification is consistent with our site-specific observations, which indicate that the materials beneath the site are predominantly medium dense to very dense sands, and groundwater was not observed within the current borings to a maximum depth of  $51\frac{1}{2}$  feet bgs. Therefore, the potential for liquefaction and the associated ground deformation beneath the site is remote.

#### 2.3 Seismically Induced Settlement

Seismically induced settlement is often caused when loose to medium-dense granular soils are densified during ground shaking. As indicated in subsection 1.2 above, a layer of loose sandy material was encountered in borings B-2 and B-3 at a depth of about 12<sup>1</sup>/<sub>2</sub> and 10 feet bgs, respectively. Based on the proposed plans for development, the construction of the partial subterranean basement may remove some but not all of the loose material within the upper layers of the subsurface. As such, loose sandy soils that are not excavated as part of the future development may be susceptible to seismically-induced settlement.

#### 2.4 Subsidence

Ground surface subsidence generally results from the extraction of fluids or gas from the subsurface that can result in the gradual lowering of the overlying ground surface. The site is not located within the limits of any active oil field. Furthermore, subsidence is monitored closely through the Global Positioning Satellite System (GPS), and based on the available information from California Department of Water Resources (2014) the project site is located within a vast region (extending from the San Fernando Valley to Long Beach) that shows a low to medium estimated potential for regional subsidence. Therefore, the potential for local subsidence in the immediate vicinity of the project site is considered remote.

#### 2.5 Flooding

According to FEMA (2008), the site is not located within a defined floodplain or floodway boundary. The site has been assigned a FEMA Flood Zone X, which indicates "areas determined to be outside the 0.2% annual chance floodplain". As such, flooding is not considered a hazard at the site.

#### 2.6 Landslide

The site is located on relatively level terrain, and no landslides are mapped in the vicinity of the site (CGS, 1999). In addition, the site is not in a designated earthquake-induced landslide hazard zone (CDMG, 1999). Therefore, a potential for landslide is considered negligible.

#### 2.7 Methane Buffer Zone

The site is not located near any active or abandoned oil wells, nor is it within close proximity to a landfill. Therefore, a potential for methane at the site is considered low.

#### **KEY GEOTECHNICAL CONSIDERATIONS**

Our review indicates that the site is feasible for the intended development from a geotechnical standpoint. The following sections are some of the key geotechnical considerations.

#### **Ground Motion Parameters**

The structures are anticipated to be designed utilizing current building codes. Based on the type of development, it is anticipated that the ground motion parameters will be based on code values.

#### Foundations

Based on the currently proposed conceptual plan, the structure will have a partial subterranean level as shown in Figure 2b. The bottom of the subterranean level will extend to depths varying from few feet below existing ground surface to about 15 feet below existing ground surface.

The field exploration indicated the presence of undocumented artificial fill up to a depth of approximately 7 feet and localized loose sandy material at a depth of about 10 to 13 feet bgs. In addition, removal of demolished foundation elements as well as potential presence of USTs should be anticipated. Based on this, excavations up to a depth of 13 feet to remove unsuitable materials will be required. To support the conceptual configuration of the proposed structure along with the subterranean level, shallow foundation system consisting of spread and continuous footings supported on either engineered backfill material or medium dense to dense natural sandy alluvium material below 13 feet depth can be used.

#### **Excavation and Temporary Shoring**

Earthwork operations at the site are anticipated to include excavations for the removal of demolished foundations, subterranean structures construction, removals of undocumented fill and existing inert debris, footing excavations, and trenching for utilities. Excavations are anticipated to be performed using conventional equipment.

Temporary excavations up to a height of 4 feet can be cut vertically. Where space is available, excavations can be made with slopes of 2:1 (horizontal:vertical). Where space is unavailable, cantilever soldier piles, braced or tied-back shoring can be used to support the sides of the excavations.

Based on the information gathered, excavations are not anticipated to encounter water. However, if localized areas of perched water are encountered, it can be removed by sumps and pumping.

#### Earthwork

Earthwork should be performed in accordance with the applicable sections of the grading code for the City of Glendale and the State of California, as well as the recommendations in this report.

Areas excavated to receive fill should be cleared and stripped of all debris, organic material and vegetation, and remnants resulting from demolition of existing foundations or structures. Cleared and grubbed material should be disposed of offsite.

The on-site excavated granular materials such as sands and silty sands can be used as engineered fill. Imported fill material, if needed, should be granular, non-corrosive, and free of organic matter or other deleterious material.

The bottom of the excavations should be proof-rolled so as to allow placement of any required fill. Fill should be placed and compacted to project specifications and observed and tested by the geotechnical engineer.

#### **Corrosion Potential of Soils**

Based on the results of the corrosion testing, the on-site soils may be classified as severely corrosive to ferrous metals, and the potential for sulfate attack on concrete is low. A corrosion consultant should be contacted to provide the appropriate measures against corrosion for metal piping.

#### GENERAL CONDITIONS

The information presented herein is provided as part of the geotechnical review associated with the due diligence process. This report is not for design or construction of the project. A detailed geotechnical investigation should be performed when the details of the development become available. Professional judgments presented in this letter report are based on an evaluation of the technical information gathered; our understanding of the proposed development; and our general experience in the field of geotechnical engineering. The findings presented in this letter report are based on the assumption that the subsurface conditions do not deviate appreciably from those disclosed by the field exploration. GeoPentech does not guarantee the performance of the project in any respect, only that the engineering work and judgment rendered meet the standard of care of the geotechnical profession at this time and for this vicinity of practice.

#### CLOSURE

Thank you for providing GeoPentech the opportunity to participate in this project. If you have any questions or require additional information, please call.

Very truly yours,

GeoPentech, Inc,

Sarkis Tatusian Principal Geotechnical Engineer

Attachments:

- Figure 1 Site Location Map
- Figure 2a Site Plan
- Figure 2b Conceptual Site Plan
- Figure 3a Regional Geology Map
- Figure 3b Regional Geology Map Legend
- Figure 4 Cross-Section A-A'
- Figure 5 Geophysical Anomalies
- Figure 6 Regional Fault Map

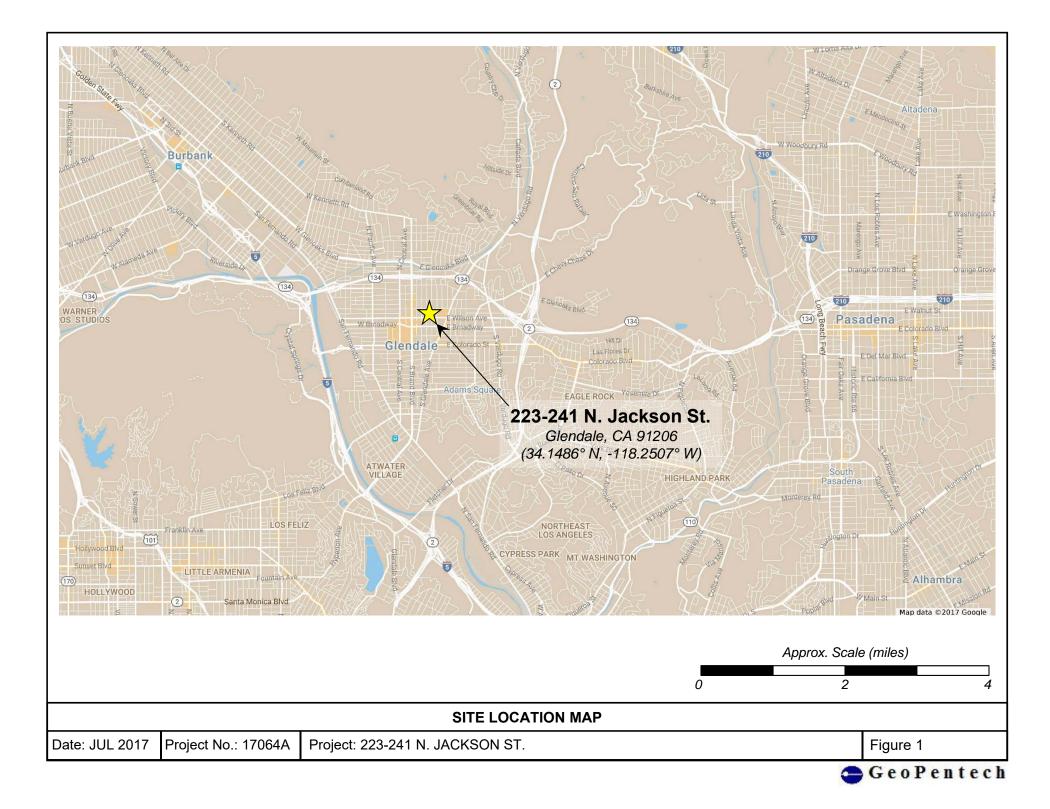
Appendix A – Field Exploration

- Appendix B Prior Field Explorations
- Appendix C Laboratory Testing



NO 80521




#### REFERENCES

ASTM International, West Conshohocken, PA, www.astm.org

- California Department of Water Resources, 2014, "Summary of Recent, Historical, and Estimated Potential for Future Land Subsidence in California, Technical Memorandum."
- California Division of Mines and Geology, 1998, Seismic Hazard Report for the Burbank 7.5-Minute Quadrangle, Los Angeles County, California: Open File Report 98-16.
- California Division of Mines and Geology, 1998, Seismic Hazard Report for the Pasadena 7.5-Minute Quadrangle, Los Angeles County, California: Open File Report 98-14.
- California Geologic Survey (CGS), 1999. Earthquake Zones of Required Investigation, Burbank, 7.6 Minute Quadrangle.
- California Geologic Survey (CGS), 2012, compiled by Bedrossian, T.L., and Roffers, P.D., Geologic Compilations of Quaternary Surficial Deposits in Southern California, Los Angeles 30' x 60' Quadrangle (Revised): CGS Special Report 217, Plate 9, scale 1:100,000.
- California Test Methods (CTM), California Department of Transportation (Caltrans), Sacramento, CA, http://www.dot.ca.gov/hq/esc/ctms
- Federal Emergency Management Agency (FEMA), 2008, "Flood Insurance Study for Los Angeles County," September 26, 2008.
- Andersen Environmental, 2015, Phase I Environmental Site Assessment, 223-237 and 241 North Jackson Street and 206 North Kenwood Street, Glendale, California 91206. Dated July 10, 2015.
- Andersen Environmental, 2015, Geophysical Survey and Limited Soil Assessment, 233-237 & 241 and 241 North Jackson Street, Glendale, California 91206. Dated August 7, 2015.

**FIGURES** 



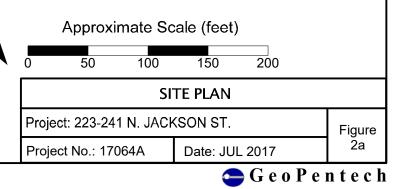


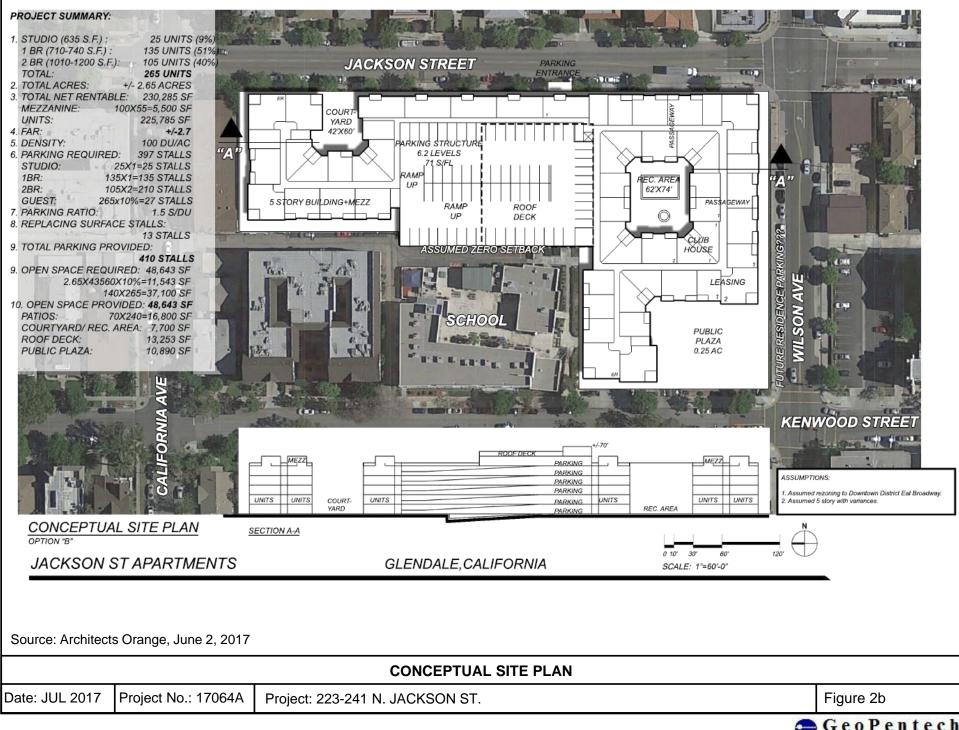


## **LEGEND**

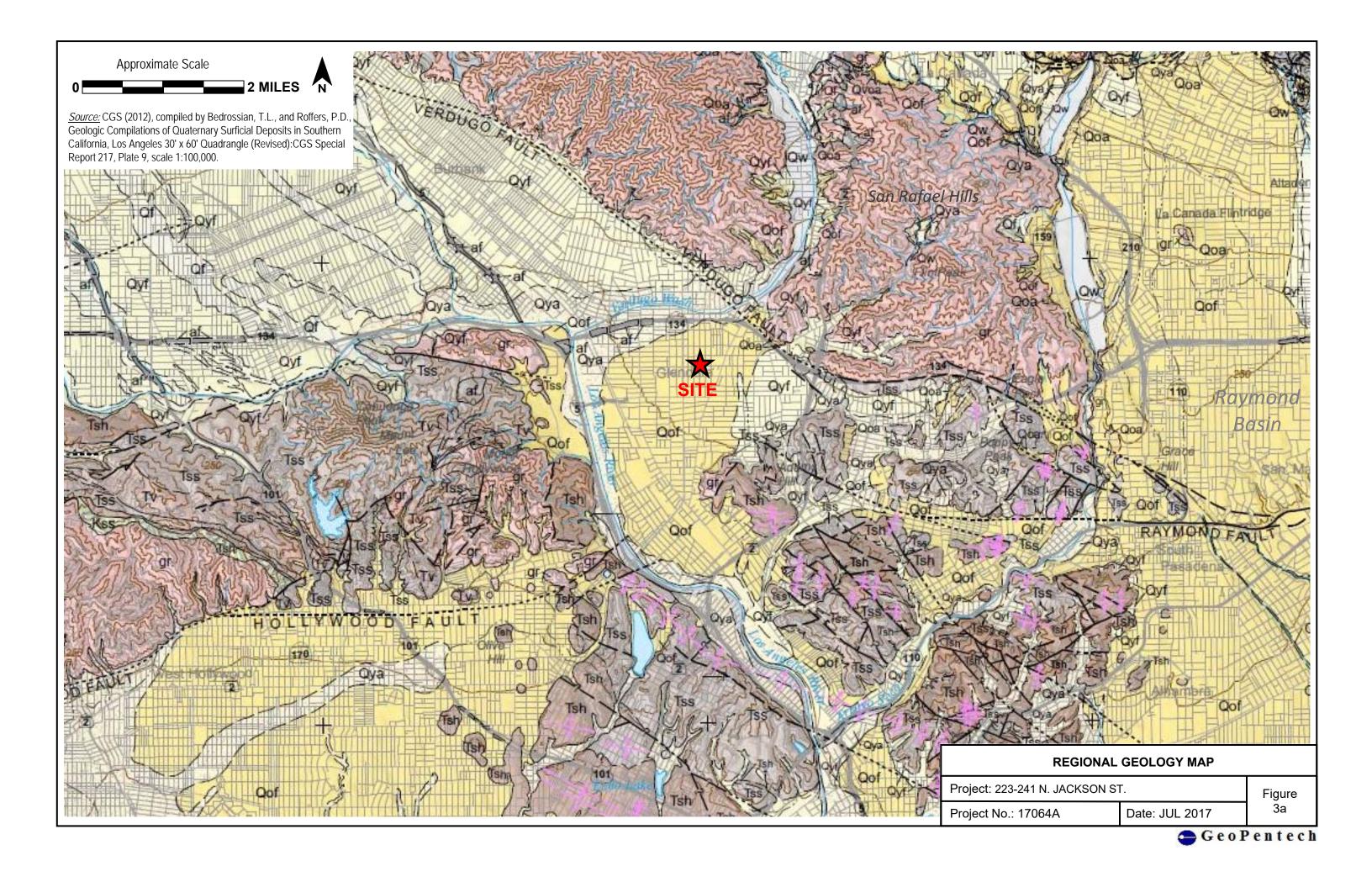
Approximate boring location (depth shown in red) (*This investigation*)

Approximate boring location (depth shown in red) (Andersen Environmental, 2015)


Approximate location of hand auger borings HA1 & HA2 (Andersen Environmental, 2015)


Cross section

Approximate outline of the site


Approximate outline of the proposed development

Outline of area surveyed with geophysical methods (Subsurface Surveys & Associates, Inc., 2015)





GeoPentech



#### MAP UNITS

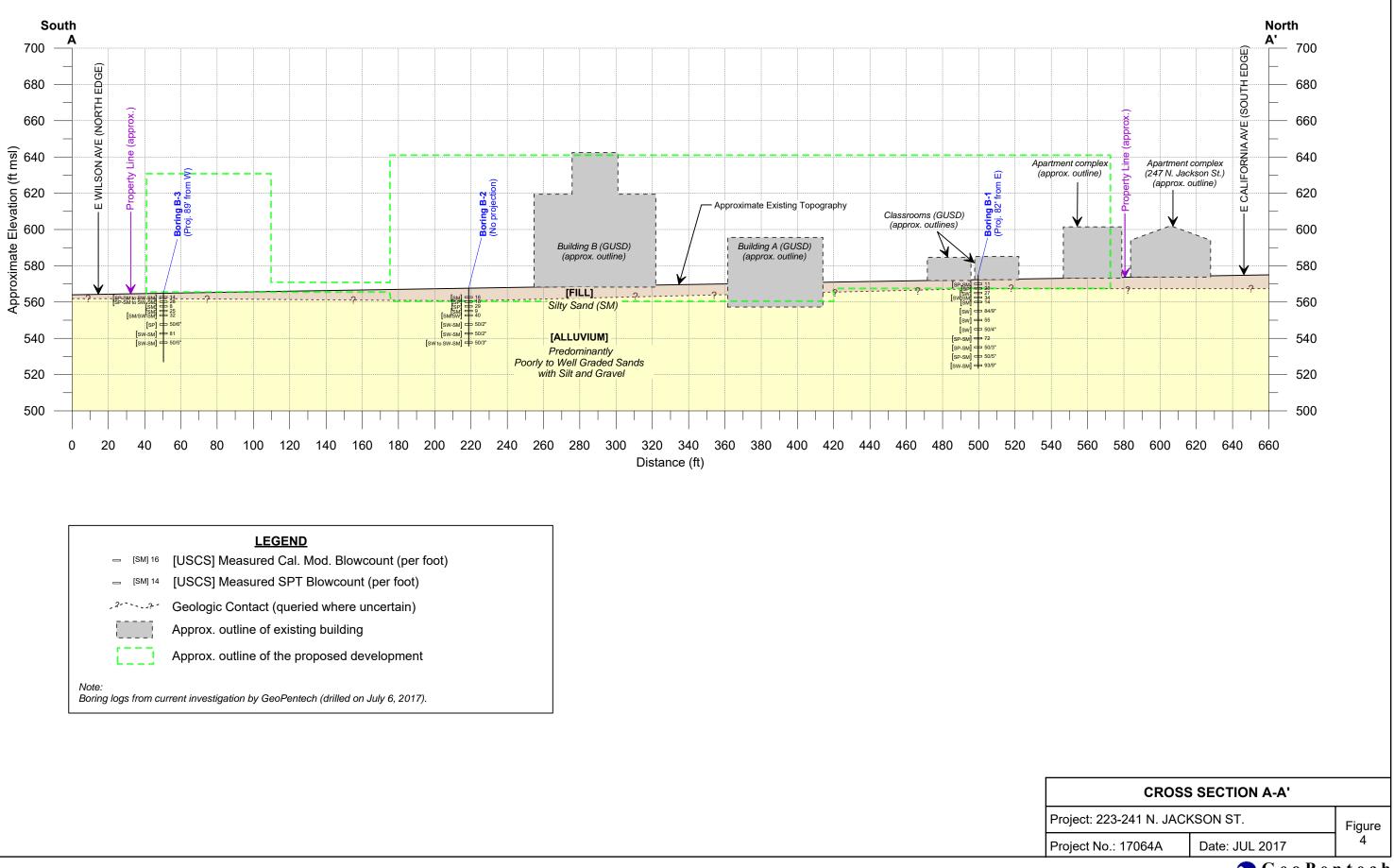
#### Late Holocene (Surficial Deposits)

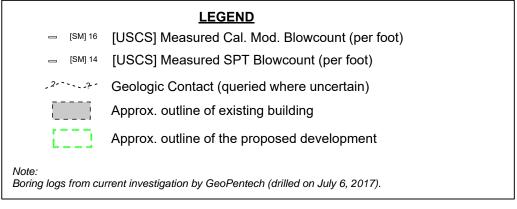
| af   | Artificial Fill - deposits of fill resulting from human construction, mining, or quarrying activities; includes<br>engineered fill for buildings, roads, dams, airport runways, harbor facilities, and waste landfills                                                                                 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Qsu  | Undifferentiated Surficial Deposits - includes colluvium, slope wash, talus deposits, and other surface deposits of all ages; generally unconsolidated but locally may contain consolidated layers                                                                                                     |
| Qle  | Landslide Deposits - may include debris flows and older landslides of various earth material and movement<br>types; unconsolidated to moderately well-consolidated                                                                                                                                     |
| Qb   | Beach Deposits - unconsolidated marine beach sediments consisting mostly of fine- and medium-grained,<br>well-sorted sand                                                                                                                                                                              |
| Qw   | Alluvial Wash Deposits - unconsolidated sandy and gravelly sediment deposited in recently active channels<br>of streams and rivers; may contain loose to moderately loose sand and silty sand                                                                                                          |
| Qf   | Alluvial Fan Deposits - unconsolidated boulders, cobbles, gravel, sand, and silt recently deposited where a<br>river or stream issues from a confined valley or canyon; sediment typically deposited in a fan-shaped cone;<br>gravelly sediment generally more dominant than sandy sediment            |
| Qa   | Alluvial Valley Deposits - unconsolidated clay, silt, sand, and gravel recently deposited parallel to localized<br>stream valleys and/or spread more regionally onto alluvial flats of larger river valleys; sandy sediment<br>generally more dominant than gravelly sediment                          |
| Qt   | <b>Terrace Deposits</b> - includes marine and stream terrace deposits; marine deposits include slightly to<br>moderately consolidated and bedded gravel and conglomerate, sand and sandstone, and silt and siltstone;<br>river terrace deposits consist of unconsolidated thin- to thick-bedded gravel |
| Ql   | Lacustrine, Playa, and Estuarine (Paralic) Deposits - mostly unconsolidated fine-grained sand, silt, mud,<br>and clay from fresh water (lacustrine) lakes, saline (playa) dry lakes that are periodically flooded, and<br>estuaries; deposits may contain salt and other evaporites                    |
| Qe   | Eolian and Dune Deposits - unconsolidated, generally well-sorted wind-blown sand; may occur as dune forms or sheet sand                                                                                                                                                                                |
|      | Holocene to Late Pleistocene (Surficial Deposits)                                                                                                                                                                                                                                                      |
| Qyf  | Young Alluvial Fan Deposits - unconsolidated to slightly consolidated, undissected to slightly dissected<br>boulder, cobble, gravel, sand, and silt deposits issued from a confined valley or canyon                                                                                                   |
| Qya  | Young Alluvial Valley Deposits - unconsolidated to slightly consolidated, undissected to slightly dissected<br>clay, silt, sand, and gravel along stream valleys and alluvial flats of larger rivers                                                                                                   |
|      | Late to Middle Pleistocene (Surficial Deposits)                                                                                                                                                                                                                                                        |
| Qof  | Old Alluvial Fan Deposits - slightly to moderately consolidated, moderately dissected boulder, cobble, gravel, sand, and silt deposits issued from a confined valley or canyon                                                                                                                         |
| Qoa  | Old Alluvial Valley Deposits - slightly to moderately consolidated, moderately dissected clay, silt, sand,<br>and gravel along stream valleys and alluvial flats of larger rivers                                                                                                                      |
| Qot  | Old Terrace Deposits - slightly to moderately consolidated, moderately dissected marine and stream<br>terrace deposits                                                                                                                                                                                 |
| Qol  | Old Lacustrine, Playa, and Estuarine (Paralic) Deposits - slightly to moderately consolidated, moderately dissected fine-grained sand, silt, mud, and clay from lake, playa, and estuarine deposits of various types                                                                                   |
|      | Middle to Early Pleistocene (Surficial Deposits)                                                                                                                                                                                                                                                       |
| Qvof | Very Old Alluvial Fan Deposits - moderately to well-consolidated, highly dissected boulder, cobble, gravel, sand, and silt deposits issued from a confined valley or canyon                                                                                                                            |
| Qvoa | Very Old Alluvial Valley Deposits - moderately to well-consolidated, highly dissected clay, silt, sand, and gravel along stream valleys and alluvial flats of larger rivers; generally uplifted and deformed                                                                                           |
|      | Quaternary (Bedrock)                                                                                                                                                                                                                                                                                   |
| Qss  | Coarse-grained formations of Pleistocene age and younger - primarily sandstone and conglomerate                                                                                                                                                                                                        |
| Qsh  | Fine-grained formations of Pleistocene age and younger - includes fine-grained sandstone, siltstone,                                                                                                                                                                                                   |

|     | Tertiary (Bedrock)                                                                                               |
|-----|------------------------------------------------------------------------------------------------------------------|
| Tss | Coarse-grained Tertiary age formations - primarily sandstone and conglor                                         |
| Tsh | Fine-grained Tertiary age formations - includes fine-grained sandstone, si<br>siliceous and calcareous sediments |
| ŢĹ  | Tertiary age formations of volcanic origin                                                                       |
|     | Mesozoic and Older (Bedrock)                                                                                     |
| Kss | Coarse-grained Cretaceous age formations of sedimentary origin                                                   |
| Ksh | Fine-grained Cretaceous age formations of sedimentary origin                                                     |
| pKm | Cretaceous and pre-Cretaceous metamorphic formations of sedimental                                               |
| sp  | Serpentinite of all ages                                                                                         |
| gr  | Granitic and other intrusive crystalline rocks of all ages                                                       |
|     |                                                                                                                  |

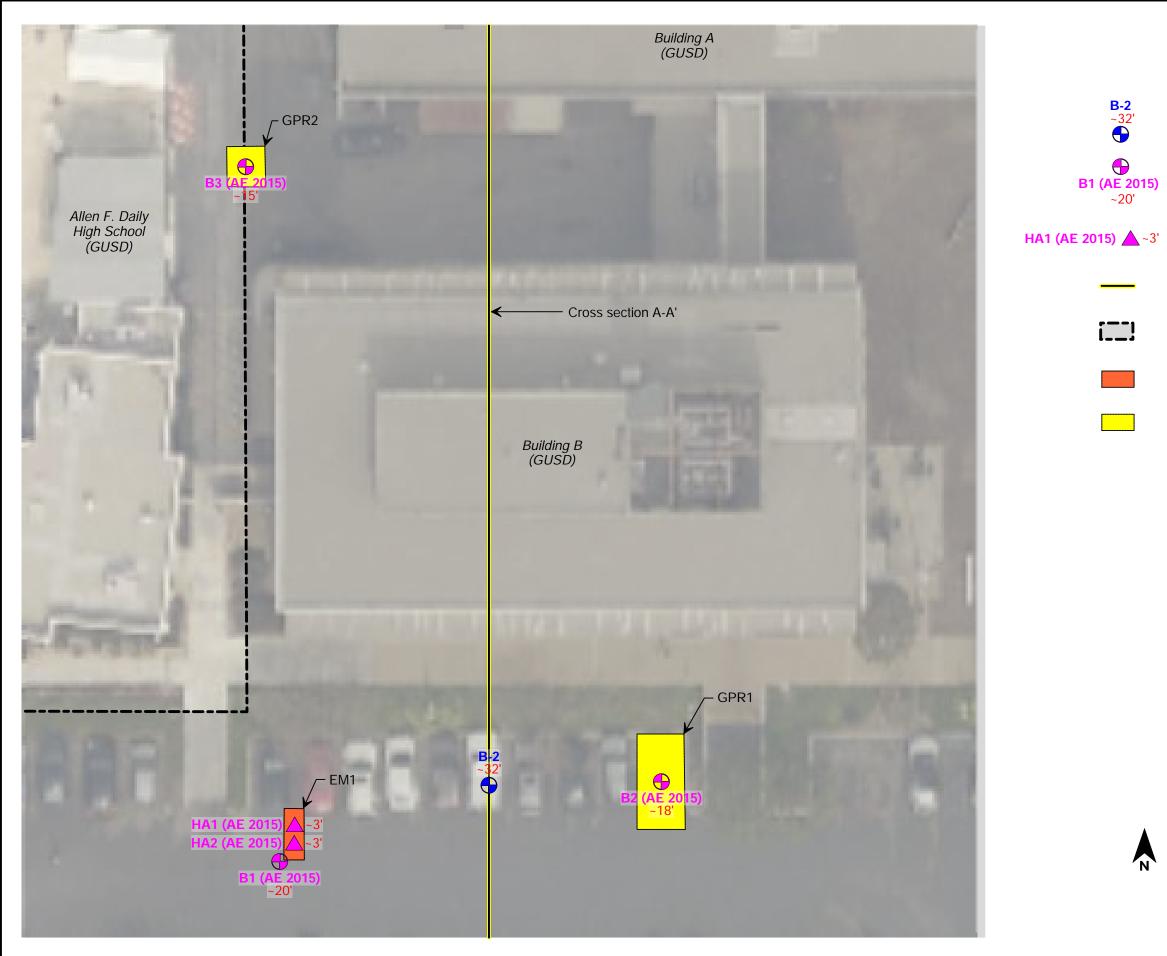
#### SYMBOL EXPLANATION

[For geologic line symbols: lines are solid where location is accurate, long-dashed where location is approximate, short-dashed where location is inferred, dotted where location is concealed. Queries added where identity or existence may be questionable.]


| f  | Young Alluvial Fan Deposits - unconsolidated to slightly consolidated, undissected to slightly dissected<br>boulder, cobble, gravel, sand, and silt deposits issued from a confined valley or canyon            |          | Contacts                              |                                                                                         |                     |         |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------|-----------------------------------------------------------------------------------------|---------------------|---------|
|    | Young Alluvial Valley Deposits - unconsolidated to slightly consolidated, undissected to slightly dissected                                                                                                     |          | Contact                               |                                                                                         |                     |         |
|    | clay, silt, sand, and gravel along stream valleys and alluvial flats of larger rivers                                                                                                                           |          | Gradational contact                   |                                                                                         |                     |         |
|    | Late to Middle Pleistocene (Surficial Deposits)                                                                                                                                                                 |          |                                       | ineate geologic units that were mapped as<br>urce map, but are consolidated on this map |                     |         |
| f  | <b>Old Alluvial Fan Deposits</b> - slightly to moderately consolidated, moderately dissected boulder, cobble, gravel, sand, and silt deposits issued from a confined valley or canyon                           |          |                                       | nce map, but are consolidated on this map                                               | J.                  |         |
| a  | Old Alluvial Valley Deposits - slightly to moderately consolidated, moderately dissected clay, silt, sand,<br>and gravel along stream valleys and alluvial flats of larger rivers                               |          | Fault Includes strike-slip, normal, r | everse, oblique, and unspecified slip                                                   |                     |         |
| t  | Old Terrace Deposits - slightly to moderately consolidated, moderately dissected marine and stream<br>terrace deposits                                                                                          |          | Lineament                             |                                                                                         |                     |         |
|    | Old Lacustrine, Playa, and Estuarine (Paralic) Deposits - slightly to moderately consolidated, moderately                                                                                                       |          | Folds Showing direction of plunge     | where appropriate                                                                       |                     |         |
| I  | dissected fine-grained sand, silt, mud, and clay from lake, playa, and estuarine deposits of various types                                                                                                      |          | Anticline                             |                                                                                         |                     |         |
|    | Middle to Early Pleistocene (Surficial Deposits)                                                                                                                                                                |          | Overturned anticline                  |                                                                                         |                     |         |
| of | Very Old Alluvial Fan Deposits - moderately to well-consolidated, highly dissected boulder, cobble, gravel,<br>sand, and silt deposits issued from a confined valley or canyon                                  | *        | Syncline                              |                                                                                         |                     |         |
|    |                                                                                                                                                                                                                 |          | Dike                                  |                                                                                         |                     |         |
| a  | Very Old Alluvial Valley Deposits - moderately to well-consolidated, highly dissected clay, silt, sand, and<br>gravel along stream valleys and alluvial flats of larger rivers; generally uplifted and deformed | <u>.</u> | Stream                                |                                                                                         |                     |         |
| _  | Quaternary (Bedrock)                                                                                                                                                                                            | 0~       | Spring                                | REGIONAL                                                                                | . GEOLOGY MAP LEGEN | ID      |
| 5  | Coarse-grained formations of Pleistocene age and younger - primarily sandstone and conglomerate                                                                                                                 |          | Road                                  | Project: 223-241 N. JACKSON                                                             | ST.                 | Figure  |
| ו  | Fine-grained formations of Pleistocene age and younger - includes fine-grained sandstone, siltstone,<br>mudstone, shale, siliceous and calcareous sediments                                                     | <u> </u> | County boundary                       | Project No.: 17064A                                                                     | Date: JUL 2017      | 3b      |
|    |                                                                                                                                                                                                                 |          |                                       |                                                                                         |                     | Dontoch |
|    |                                                                                                                                                                                                                 |          |                                       |                                                                                         | Geo.                | Pentech |


<u>Source:</u> CGS (2012), compiled by Bedrossian, T.L., and Roffers, P.D., Geologic Compilations of Quaternary Surficial Deposits in Southern California, Los Angeles 30' x 60' Quadrangle (Revised):CGS Special Report 217, Plates 9, scale 1:100,000.

omerate


siltstone, mudstone, shale,

ary and volcanic origin



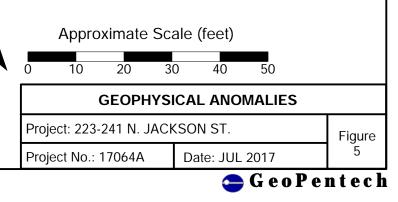


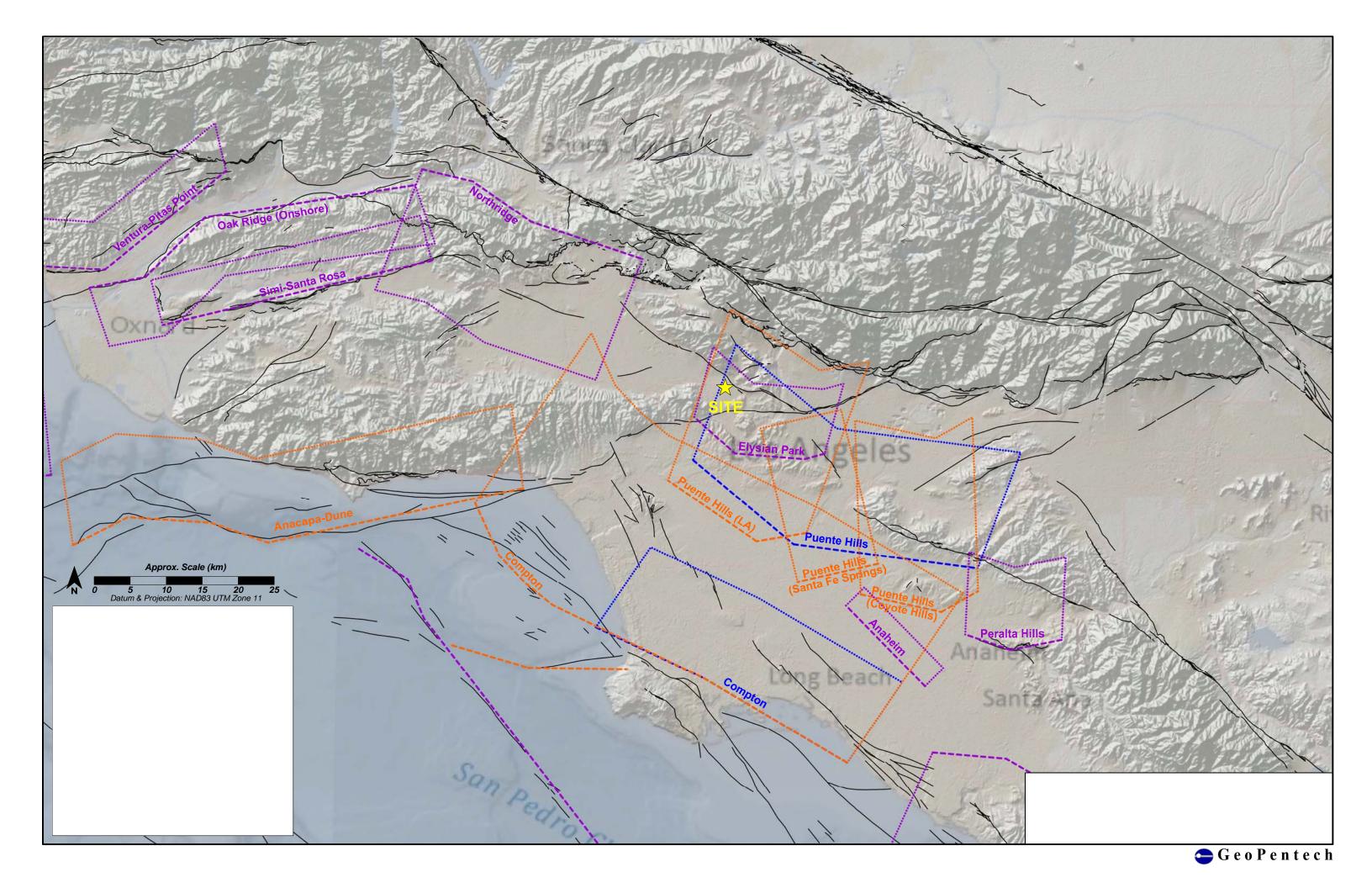
<sup>👄</sup> Geo Pentech



## <u>LEGEND</u>

Approximate boring location (depth shown in red) (This investigation)


- 5) Approximate boring location (depth shown in red) (Andersen Environmental, 2015)
- 3' Approximate hand auger boring location (depth shown in red) (Andersen Environmental, 2015)


Cross section

Approximate outline of the site

EM anomaly (possibly buried UST) (Subsurface Surveys & Associates, Inc., 2015)

GPR anomaly (disturbed soils) (Subsurface Surveys & Associates, Inc., 2015)





# **APPENDIX A**

FIELD EXPLORATION



#### A.1 FIELD EXPLORATIONS

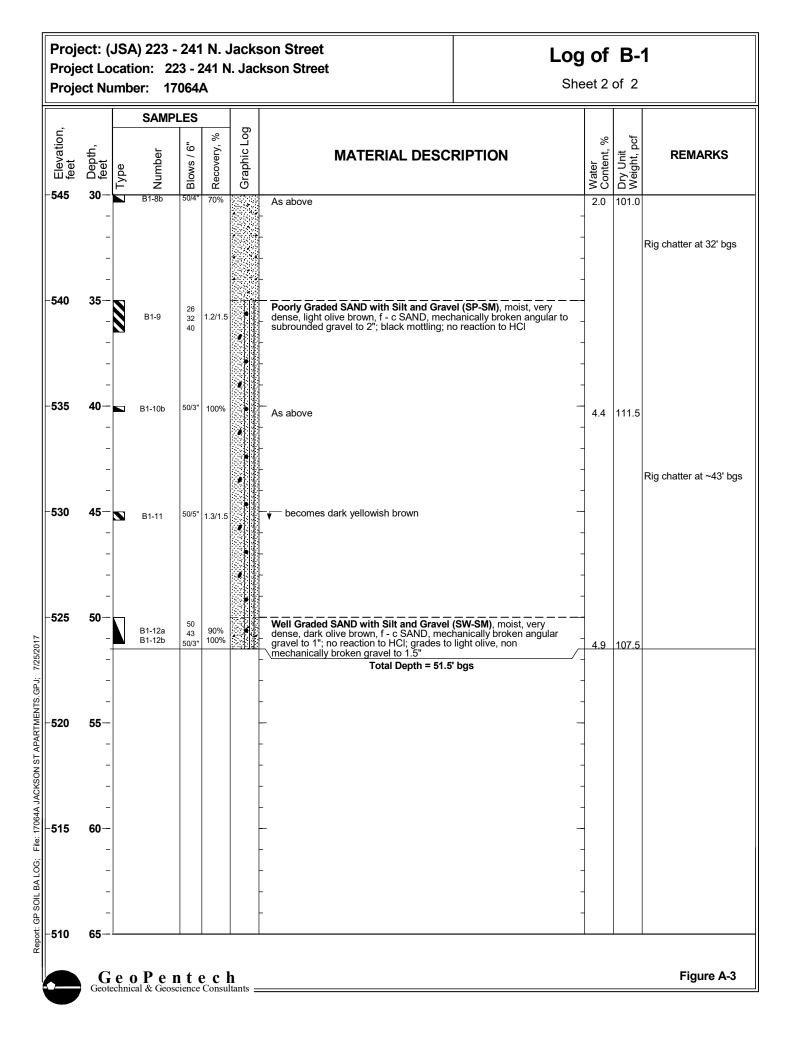
The field explorations were performed on July 6, 2017. The explorations consisted of advancing three borings to depths varying between 32 and 51 ½ feet below the existing ground surface. The approximate locations of the borings are indicated on Figure 2a in the main report. All borings were drilled using 8-inch diameter hollow stem auger drilling equipment. The work was performed under the supervision of a geotechnical engineer or a geologist who monitored the drilling operations and prepared a field record of soils observed and drilling conditions. The drilling was subcontracted to Martini Drilling, who provided all drilling equipment, crew, and supplies.

During drilling, soil samples were obtained at approximate intervals ranging between 2.5 and 5-foot using either a Standard Penetration Test (SPT) sampler or a Modified California (CA) sampler. SPT and CA samples were taken by driving a sampler approximately 18 inches into the soil at the bottom of the boring using a 140-pound hammer falling approximately 30 inches. The truck mounted CME-75 Diesel HT rig used by Martini Drilling utilized an automatic-trip hammer.

The SPT sampler cutting shoe and barrel have nominal inside diameters of 1.375 and 1.50 inches, respectively, and a nominal outside diameter of 2.00 inches. Liners were not used. The SPT samples were placed in plastic bags, labeled, and sealed. The CA sampler cutting shoe and barrel have nominal inside diameters of 2.38 and 2.50 inches, respectively, and a nominal outside diameter of 3 inches. Nominal 6-inch long, 2.4-inch diameter brass tubes were used to line the barrel. Plastic end caps were placed on the CA tubes to help preserve the moisture content of the samples. Bulk soil samples were also obtained at certain depths in selected boreholes. Upon completion of drilling, logging, and sampling, all borings were backfilled with cuttings and patched at the surface with asphalt.

After recovering the sample, the engineer or geologist noted the depth interval, recorded a description of the recovered material onto a field log, and sealed and labeled the sample for transport to the laboratory. The soil descriptions noted on the field logs were visually classified in accordance with the Unified Soil Classification System. The results of the borehole drilling and logging effort are provided on the borehole logs, Figures A-2 through A-4, and on a key to the logs of boreholes, Figure A-1.



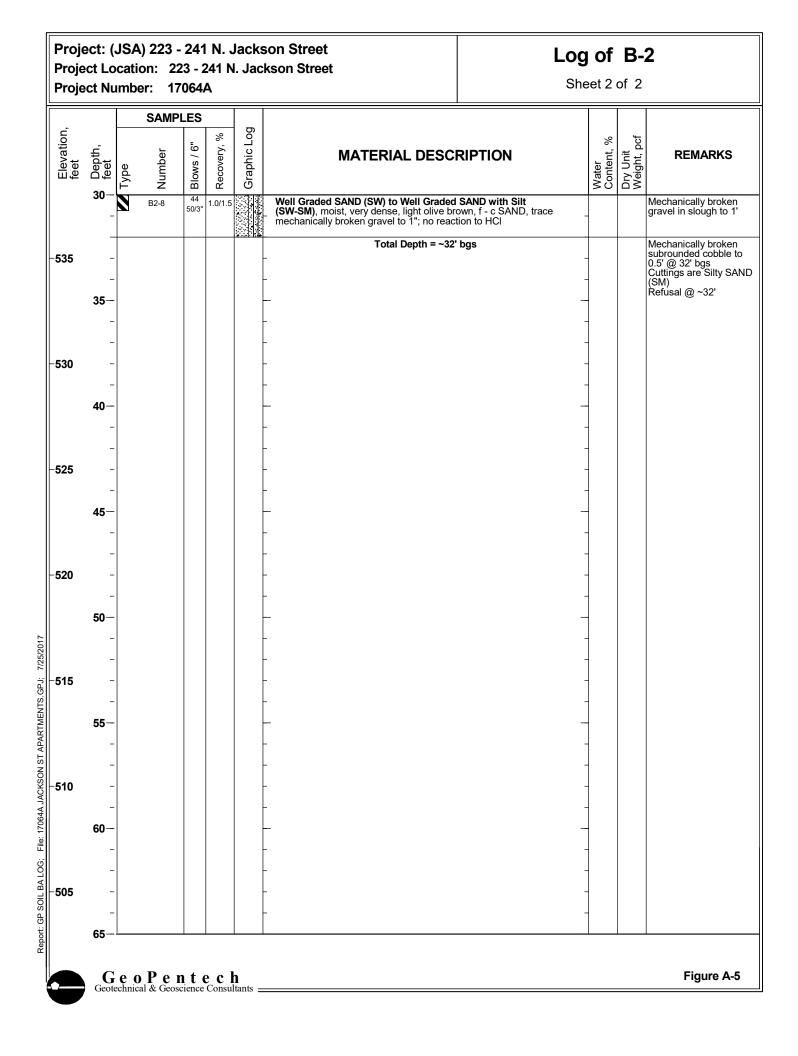

| Project: (JSA) 223 - 241 N. Jackson Street<br>Project Location: 223 - 241 N. Jackson Street<br>Project Number: 17064A |                                      |                                    |                                                    |                                    |                                    |                          |                                                                                                                        |                                                           | Key to                                                                                                                                                                                                                                                                                          | Log<br>heet 1                                                                              |                                                                                                                 | Boring                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------|----------------------------------------------------|------------------------------------|------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Toje                                                                                                                  |                                      |                                    |                                                    |                                    | 4                                  |                          |                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                                 |                                                                                            |                                                                                                                 |                                                                                                      |
| Elevation,<br>feet                                                                                                    | Depth,<br>feet                       | Type                               | SAMF<br>Numper                                     | Blows / 6"                         | Recovery, %                        | Graphic Log              | MATERIA                                                                                                                | L DESC                                                    | RIPTION                                                                                                                                                                                                                                                                                         | Water                                                                                      | Dry Unit<br>Weight, pcf                                                                                         | REMARKS                                                                                              |
| 1                                                                                                                     | 2                                    | 3                                  | 4                                                  | 5                                  | 6                                  | 7                        |                                                                                                                        | 8                                                         |                                                                                                                                                                                                                                                                                                 | 9                                                                                          | 10                                                                                                              | 11                                                                                                   |
| <u>co</u>                                                                                                             |                                      | N DES                              | SCRIP                                              | TIONS                              | <u>S</u>                           |                          |                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                                 |                                                                                            |                                                                                                                 |                                                                                                      |
| 1                                                                                                                     | Elevat<br>or site                    | tion:                              | Elevatio                                           | on in fe                           | eet ref                            | erence                   | ed to mean sea level (MSL)                                                                                             | 7 <u>G</u>                                                | raphic Log: Graphic depincountered; typical symbols                                                                                                                                                                                                                                             | ction of                                                                                   | subsurf                                                                                                         | ace material                                                                                         |
| 2<br>3                                                                                                                | <u>Depth</u><br><u>Samp</u><br>showr | i <u>:</u> Dep<br>le Typ<br>n; sam | oth in fe<br><u>pe:</u> Typ<br>ppler sy            | be of s<br>mbols                   | oil san<br>are ei                  | nple co<br>xplaine       | nd surface.<br>ollected at depth interval<br>ed below.                                                                 | 8 Min                                                     | aterial Description: Desc<br>clude density/consistency<br>olor, and grain size (f = fir<br>/ater Content: Water con                                                                                                                                                                             | cription<br>/ (from<br>ie, m =                                                             | of mater<br>field ass<br>medium                                                                                 | rial encountered; ma<br>essments), moisture<br>, c = coarse).                                        |
| 5                                                                                                                     | Samp<br>driven<br>weigh<br>record    | ling F<br>sam<br>t liste<br>ded fo | <b>Resista</b><br>oler 6 ir<br>d in har<br>r pushe | nce: N<br>nches,<br>nmer<br>ed sam | umber<br>or dis<br>data.<br>plers. | of blo<br>tance<br>Hydra | on number.<br>ws required to advance<br>noted, using the drive<br>ulic down-pressure may be<br>nt) of sample recovered |                                                           | eight of soil, measured in<br>r <mark>y Unit Weight:</mark> The weigl<br>olume of soil mass, meas<br>emarks and Other Tests:<br>garding drilling or sampli                                                                                                                                      | lab acc<br>nt of soi<br>ured ac<br>. Comm                                                  | cording to<br>ll solids p<br>cording<br>nents an<br>e by drill                                                  | o ASTM D2216.<br>per cubic foot of tota<br>to ASTM D2937.<br>d observations<br>er or field personnel |
|                                                                                                                       | from s<br>recove                     | sampl<br>ered c                    | ing inte<br>livided                                | rval; c<br>by run                  | alculat<br>length                  | ted as<br>1.             | length of sample<br>I <mark>BOLS</mark>                                                                                | 0                                                         | ther lab tests are indicate<br>elow.                                                                                                                                                                                                                                                            | d using                                                                                    | abbrevi                                                                                                         | ations explained                                                                                     |
|                                                                                                                       | Well                                 |                                    | D (SM)<br>ed SAN<br>M)                             | ID with                            | ı                                  |                          | Poorly Graded SAND<br>(SP)<br>Poorly Graded SAND with<br>Silt and Gravel (SP-SM)                                       |                                                           | Vell Graded SAND (SW)<br>Vell Graded SAND with<br>Silt and Gravel (SW-SM)                                                                                                                                                                                                                       |                                                                                            | Po<br>Sili                                                                                                      | orly Graded SAND v<br>t (SP-SM)                                                                      |
|                                                                                                                       | Bulk                                 | Samp                               | <b>IPLER</b><br>Dele<br>Penetra                    |                                    | <u>PHIC</u>                        | SYM                      | BOLS<br>California Modified<br>Sampler                                                                                 | COMP<br>CONS<br>CORR<br>DS<br>EI<br>SA<br>HYD<br>LL<br>PI | R LABORATORY TEST<br>Compaction by modified<br>One-dimensional consoli<br>Chemical tests to determ<br>Consolidated drained dire<br>Expansion Index (ASTM<br>Sieve Analysis (ASTM D<br>Hydrometer Analysis on<br>Liquid Limit from Atterbe<br>Plasticity Index; NP indic<br>R-Value (ASTM D2844) | effort (A<br>dation t<br>ine soil<br>ect shea<br>D4829)<br>422), %<br>fine-gra<br>rg Limit | ASTM D<br>est (AST<br>corrosiv<br>ar test (A<br>, EI at 5<br>, EI at 5<br>, ext 200<br>s ined soil<br>s test (A | 1557)<br>FM D2435)<br>vity<br>ASTM D3080)<br>0% saturation<br>sieve<br>Is<br>STM D4318)              |
| <u>OTI</u>                                                                                                            | HER (                                | GRAF                               | PHIC S                                             | YMB                                | <u>DLS</u>                         |                          |                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                                 |                                                                                            |                                                                                                                 |                                                                                                      |
|                                                                                                                       | - Con                                | itact b                            | etweer                                             | n strata                           | à                                  |                          |                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                                 |                                                                                            |                                                                                                                 |                                                                                                      |
| <br>•                                                                                                                 |                                      | inge v                             | vithin m                                           |                                    |                                    |                          | gradational change<br>within a stratum                                                                                 | System<br>descrip<br>Descrip<br>location<br>not war       | ssifications are based on<br>bescriptions and stratun<br>tions may have been mod<br>tions on these logs apply<br>as and at the time the bori<br>tranted to be representative<br>boations or times.                                                                                              | n lines a<br>lified to<br>only at<br>ngs wer                                               | are interp<br>reflect la<br>the spec<br>e advan                                                                 | bretive; field<br>b test results.<br>ific boring<br>ced; they are                                    |
|                                                                                                                       | G                                    | e o                                | Pe<br>Il & Geo                                     | nt                                 | e c I                              | 1                        |                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                                 |                                                                                            |                                                                                                                 | Figure A-1                                                                                           |

#### Project: (JSA) 223 - 241 N. Jackson Street Project Location: 223 - 241 N. Jackson Street Project Number: 17064A

## Log of B-1

Sheet 1 of 2

| Date(s)<br>Drilled 07/06/2017        |                |       |                   |                   |              |             | Logged By A. Lechnowskyj C                                                                                                                                                                                                                                                                           | hecke                  | ed By               |                         | A. Harounian                                            |
|--------------------------------------|----------------|-------|-------------------|-------------------|--------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------|-------------------------|---------------------------------------------------------|
| Drilling<br>Method Hollow Stem Auger |                |       |                   |                   |              |             |                                                                                                                                                                                                                                                                                                      | otal Depth<br>Borehole |                     |                         | 51.5 feet                                               |
| Drill Rig<br>Type CME-75             |                |       |                   |                   |              |             | Drilling<br>Contractor Martini A                                                                                                                                                                                                                                                                     | pproxi<br>urface       | imate<br>e Elev     | ation                   | ~575' MSL                                               |
| Ground<br>Level(s                    |                | No    | t Encoun          | tere              | d            |             |                                                                                                                                                                                                                                                                                                      | amme<br>ata            | er                  | Auto<br>1401            | omatic hammer<br>bs/30" drop                            |
| Boreho<br>Locatio                    |                | Appro | ox. 34.149        | 5°, -11           | 18.2503      | 0           | Borehole<br>Completion Cuttings/Asphalt Patch                                                                                                                                                                                                                                                        |                        |                     |                         |                                                         |
|                                      |                |       | SAMPI             | LES               |              | 6           |                                                                                                                                                                                                                                                                                                      |                        |                     |                         |                                                         |
| Elevation,<br>feet                   | Depth,<br>feet | Type  | Number            | Blows / 6"        | Recovery, %  | Graphic Log | MATERIAL DESCRIPTION                                                                                                                                                                                                                                                                                 |                        | Water<br>Content, % | Dry Unit<br>Weight, pcf | REMARKS                                                 |
| 575                                  | 0              |       | B1-Bulk1          |                   |              |             | ASPHALT                                                                                                                                                                                                                                                                                              |                        |                     |                         | Hand Auger<br>from 0 to 5' bgs                          |
|                                      | -              | -     |                   |                   |              |             | BASE<br>[FILL]<br>Silfy SAND (SM), moist, dark yellowish brown, f - m SAND,<br>mechanically broken cobbles to 4"; no reaction to HCl; brick, wood,<br>and glass debris<br>[ALLUVIUM]<br>Silfy SAND (SM), moist, olive brown, f SAND, few gravel to 1"; no<br>reaction to HCl; occasional bark debris |                        |                     |                         | CORR                                                    |
| 570                                  | 5              |       | B1-1              | 4<br>5<br>6       | 0.7/1.5      |             | Poorly Graded SAND with Silt (SP-SM), moist, medium dense,<br>olive brown, f - m SAND, trace mechanically broken gravel to 1"; no<br>reaction to HCI                                                                                                                                                 |                        |                     |                         |                                                         |
|                                      | -              |       | B1-2a<br>B1-2b    | 6<br>11<br>17     | 100%<br>100% |             | <b>Poorly Graded SAND (SP)</b> , moist, medium dense, olive brown,<br>m - c SAND, trace angular gravel to 0.5"; no reaction to HCI                                                                                                                                                                   | -                      | 1.7                 | 105.9                   | DS<br>Mechanically broken                               |
| 565                                  | 10-<br>-       |       | B1-3              | 6<br>11<br>16     | 1.2/1.5      |             | Well Graded SAND with Gravel (SW), moist, medium dense, olive brown, f - c SAND, trace angular gravel to 0.5"; no reaction to HCl                                                                                                                                                                    |                        |                     |                         | gravel in cuttings<br>to 2" @ 9.5' bgs<br>SA: 4% < #200 |
|                                      | -              | -     | B1-4a             | 9<br>21           | 100%         |             | As above                                                                                                                                                                                                                                                                                             |                        |                     |                         |                                                         |
| 560                                  | -<br>15-       |       | B1-4b             | 13                | 100%         |             | <b>Silty SAND (SM)</b> , moist, medium dense, olive brown, f - c SAND, trace subrounded gravel to 1"; no reaction to HCI                                                                                                                                                                             | _                      | 2.4                 | 117.4                   |                                                         |
|                                      | -              |       | B1-5              | 4<br>6<br>8       | 1.5/1.5      |             | As above                                                                                                                                                                                                                                                                                             | -                      |                     |                         | SA: 16.3% < #200                                        |
| 555                                  | -<br>20<br>-   |       | B1-6a<br>B1-6b    | 10<br>34<br>50/3" | 100%<br>100% |             | Well Graded SAND (SW), moist, very dense, olive brown,<br>f - c SAND, few subrounded gravel to 1.5"; no reaction to HCl                                                                                                                                                                              | -                      | 1.9                 | 119.1                   |                                                         |
| 550                                  | 25-<br>-       |       | B1-7              | 12<br>24<br>31    | 1.5/1.5      |             | As above                                                                                                                                                                                                                                                                                             |                        |                     |                         |                                                         |
| 545                                  | -<br>30-       |       |                   |                   |              |             |                                                                                                                                                                                                                                                                                                      | -                      |                     |                         |                                                         |
|                                      | G              | e c   | Pen<br>al & Geosc | nt (              | e c l        | 1           |                                                                                                                                                                                                                                                                                                      |                        |                     |                         | Figure A-2                                              |

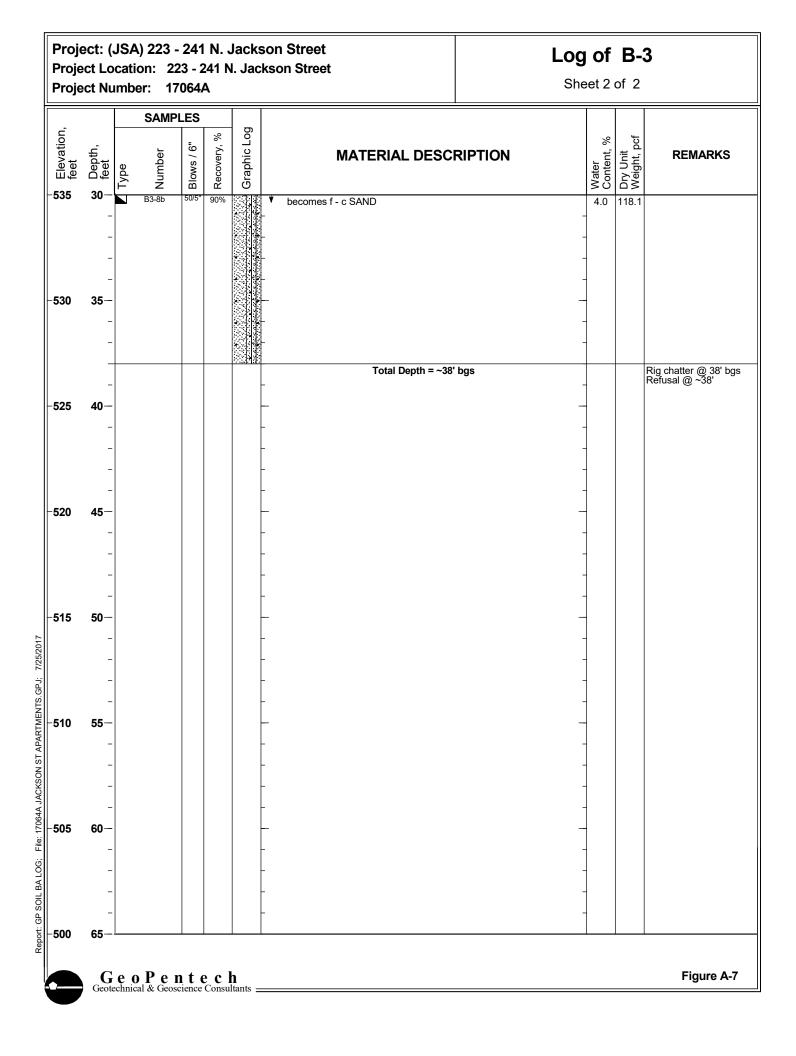



#### Project: (JSA) 223 - 241 N. Jackson Street Project Location: 223 - 241 N. Jackson Street Project Number: 17064A

## Log of B-2

Sheet 1 of 2

| Drilled Drilling     |                           | 07/06 |                |                |              |             |                                                                                                                                                                                            | cked By             |                         | A. Harounian                                                                                                   |
|----------------------|---------------------------|-------|----------------|----------------|--------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|----------------------------------------------------------------------------------------------------------------|
| Method               |                           | Hollo | w Stem         | Auge           | er           |             | Size/Type 8 HSA of B                                                                                                                                                                       | orehole             |                         | 32.0 feet                                                                                                      |
| Drill Rig<br>Type    |                           | СМЕ   | -75            |                |              |             | Contractor Maruni Surf                                                                                                                                                                     | roximate<br>ace Ele | vation                  | ~568' MSL                                                                                                      |
| Groundv<br>Level(s)  |                           | No    | t Encoun       | tere           | d            |             | Method Bulk, Cal Mod, SP1 Data                                                                                                                                                             | nmer<br>a           | Aut<br>140              | omatic hammer<br>lbs/30" drop                                                                                  |
| Borehole<br>Location |                           | Appro | ox. 34.1487    | 7°, -11        | 18.2506      | •           | Borehole<br>Completion Cuttings/Asphalt Patch                                                                                                                                              |                     |                         |                                                                                                                |
| ć                    |                           |       | SAMPI          | LES            |              | 6           |                                                                                                                                                                                            |                     |                         |                                                                                                                |
| Elevation,<br>feet   | bepth,<br>feet            | Type  | Number         | Blows / 6"     | Recovery, %  | Graphic Log | MATERIAL DESCRIPTION                                                                                                                                                                       | Water<br>Content, % | Dry Unit<br>Weight, pcf | REMARKS                                                                                                        |
| -565                 | <b>0</b> —<br>-<br>-<br>- |       | B2-Bulk1       |                |              |             | ASPHALT<br>[FILL]<br>Silty SAND (SM), moist, dark yellowish brown, f - m SAND, few<br>angular to subrounded gravel to 2"; no reaction to HCl; brick<br>fragments                           | -                   |                         | Hand Auger<br>from 0 to 5' bgs<br>No base<br>COMP<br>Brick fragments @ 1.<br>bgs                               |
|                      | 5—<br>-<br>-              |       | B2-1a<br>B2-1b | 5<br>7<br>9    | 100%<br>100% |             | As above [Alluvium]                                                                                                                                                                        | 7.2                 | 109.9                   |                                                                                                                |
| 560                  | -                         |       | B2-2           | 5<br>8<br>10   | 1.5/1.5      |             | <b>Poorly Graded SAND (SP)</b> , moist, medium dense, olive brown,<br>f - c SAND, trace mechanically broken gravel to 0.5"; no reaction to<br>HCI                                          | -                   |                         | SA: 2% < #200                                                                                                  |
|                      | 10—<br>-<br>-             |       | B2-3a<br>B2-3b | 16<br>13<br>16 | 100%<br>100% |             | As above                                                                                                                                                                                   | 2.5                 | 101.8                   | DS                                                                                                             |
| 555                  | -                         |       | B2-4           | 3<br>3<br>6    | 1.5/1.5      |             | Silty SAND (SM), moist, loose, olive brown, f - m SAND, few c SAND; no reaction to HCl                                                                                                     | -                   |                         | SA: 25.3% < #200                                                                                               |
|                      | 15—<br>-<br>-             |       | B2-5a<br>B2-5b | 7<br>12<br>28  | 100%<br>100% |             | <ul> <li>→ becomes medium dense, subrounded gravel to 1"</li> <li>Well Graded SAND (SW), moist, medium dense, olive brown,<br/>f - c SAND, gravel to 1.5"</li> </ul>                       | 9.7                 | 120.1                   |                                                                                                                |
| 550                  | -<br>-<br>20<br>-         |       | B2-6           | 24<br>50/2"    | 0.7/1.5      |             | Well Graded SAND with Silt and Gravel (SW-SM), moist, very dense, olive brown, f - c SAND, mechanically and non-mechanically broken angular to subrounded gravel to 2"; no reaction to HCl | -                   |                         | Mechanically broken<br>gravel to 2" in cutting<br>19' bgs and in slough<br>B2-6                                |
| 545                  | -<br>-<br>-               |       |                |                |              |             | ·<br>·<br>·                                                                                                                                                                                | -                   |                         | Rig chatter @ 22 - 22<br>bgs                                                                                   |
|                      | 25—<br>_<br>_             |       | B2-7b          | 50/2"          | 80%          |             | As above; mechanically broken angular gravel to 3"                                                                                                                                         | 2.2                 | 107.1                   | B2-7b primarily sloug                                                                                          |
| 540                  | -<br>-<br>30-             |       |                |                |              |             |                                                                                                                                                                                            | -                   |                         | Rig chatter @ 29.5 -<br>Subrounded<br>mechanically and<br>non-mechanically<br>broken rocks to 1.5"<br>cuttings |




#### Project: (JSA) 223 - 241 N. Jackson Street Project Location: 223 - 241 N. Jackson Street Project Number: 17064A

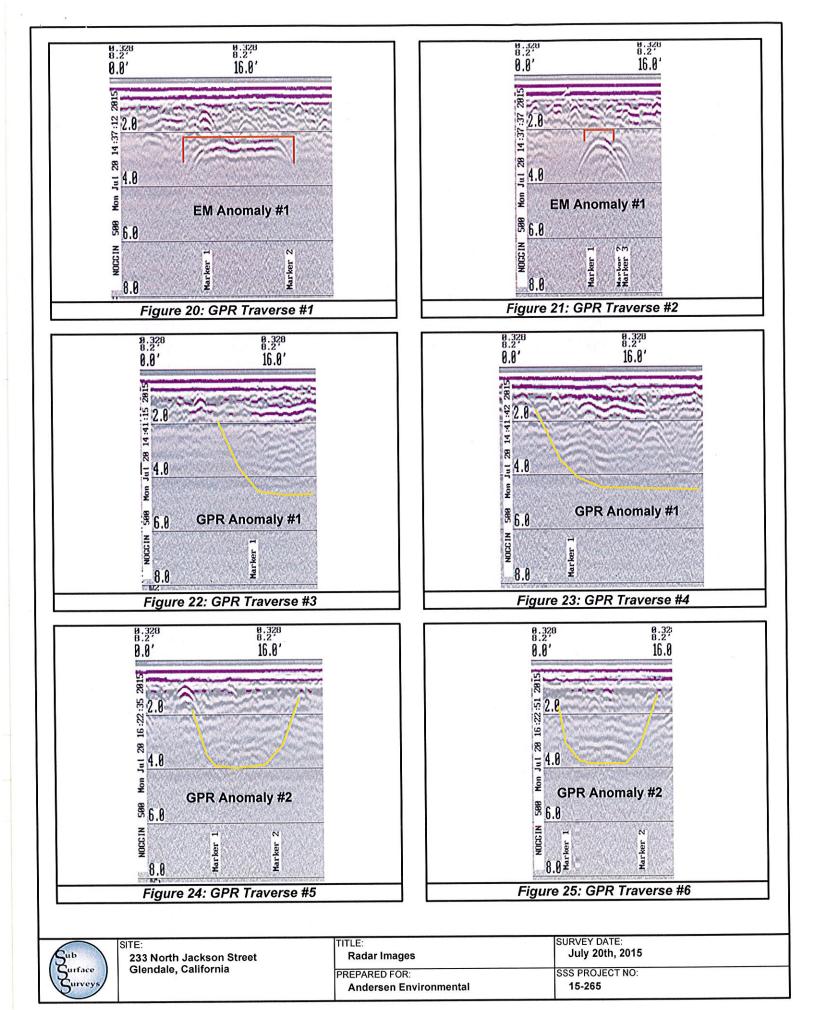
## Log of B-3

Sheet 1 of 2

| Drilling<br>Method Hollow Stem Auger |                    |       |                |                |              |             |                                                                                                                                                                                                  | l Depth<br>prehole  |                         | 38.0 feet                                              |  |
|--------------------------------------|--------------------|-------|----------------|----------------|--------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|--------------------------------------------------------|--|
| Drill Ri                             |                    | CME   | -75            |                |              |             | Drilling Mortini App                                                                                                                                                                             | oximate             | Э                       | ~565' MSL                                              |  |
| Ground<br>Ground                     |                    | No    | t Encoun       | tere           | d            |             |                                                                                                                                                                                                  | mer                 | Auto                    | omatic hammer<br>bs/30" drop                           |  |
| Borehc<br>Locatio                    |                    | Appro | ox. 34.1483    | 3°, -11        | 18.2509      | 0           | Borehole<br>Completion Cuttings/Asphalt Patch                                                                                                                                                    |                     |                         |                                                        |  |
|                                      |                    |       | SAMPI          | LES            |              | 6           |                                                                                                                                                                                                  |                     |                         |                                                        |  |
| Elevation,<br>feet                   | Depth,<br>feet     | Type  | Number         | Blows / 6"     | Recovery, %  | Graphic Log | MATERIAL DESCRIPTION                                                                                                                                                                             | Water<br>Content, % | Dry Unit<br>Weight, pcf | REMARKS                                                |  |
| 565                                  | 0—<br>-<br>-<br>-  |       | B3-Bulk1       |                |              |             | ASPHALT  [FILL] Silty SAND (SM), moist, dark yellowish brown, f - m SAND, few angular to subrounded gravel to 2"; no reaction to HCI -                                                           | -                   |                         | Hand Auger<br>from 0 to 5' bgs<br>No base<br>R-VAL: 75 |  |
| 560                                  | 5<br>-<br>-        |       | B3-1           | 7<br>7<br>7    | 1.0/1.5      |             | [Alluvium]<br>Poorly Graded SAND with Silt (SP-SM) to Well Graded SAND with<br>Silt (SW-SM), moist, medium dense, dark olive, f - c SAND; no<br>reaction to HCl                                  | -                   |                         | SA: 9.2% < #200                                        |  |
|                                      | -                  |       | B3-2a<br>B3-2b | 8<br>12<br>16  | 100%<br>100% |             | As above                                                                                                                                                                                         | 3.6                 | 98.7                    | DS                                                     |  |
| 555                                  | 10—<br>-<br>-      |       | B3-3           | 3<br>4<br>4    | 0.75/1.5     |             | Silty SAND (SM), moist, loose, olive brown, f SAND, trace<br>c SAND, trace mechanically broken gravel to 1"; no reaction to HCl                                                                  | -                   |                         | SA: 30.6% < #200                                       |  |
|                                      | -                  |       | B3-4a<br>B3-4b | 8<br>11<br>14  | 100%<br>100% |             | gravel to 0.5" − gravel to 0.5                                                                                                                                                                   | - 5.8               | 115.4                   |                                                        |  |
| 550                                  | 15—<br>-<br>-      |       | B3-5a<br>B3-5b | 13<br>14<br>18 | 1.4/1.5      |             | <ul> <li>becomes dense, f SAND, few c SAND</li> <li>Well Graded SAND with Silt and Gravel (SW-SM), moist, dense, olive brown, f - c SAND, subrounded gravel to 2"; no reaction to HCI</li> </ul> | -                   |                         |                                                        |  |
| 545                                  | -<br>20<br>-       |       | B3-6a<br>B3-6b | 11<br>50/6"    | 95%<br>100%  |             | Poorly Graded SAND (SP), moist, very dense, light olive brown,<br>m - c SAND; black mottling; no reaction to HCl                                                                                 | 3.6                 | 101.9                   |                                                        |  |
| 540                                  | _<br>25—<br>_<br>_ |       | B3-7           | 23<br>37<br>44 | 1.2/1.5      |             | Well Graded SAND with Silt (SW-SM), moist, very dense, light<br>olive brown, f - m SAND, trace mechanically and non-mechanically<br>broken subrounded gravel to 1.5"; no reaction to HCl         | -                   |                         |                                                        |  |
| 535                                  | -<br>30—           |       |                |                |              |             | -                                                                                                                                                                                                | -                   |                         |                                                        |  |



## **APPENDIX B**


## PRIOR FIELD EXPLORATIONS



### Andersen Environmental

Boring Logs and Geophysical Data Report Dated August 7, 2015 (APN: 5642-017-901)





BI BORING: **BORING LOG** EANDERSEN ENVIRONMENTAL DATE(S) DRILLED: PROJECT NO .: OF 2 PAGE / 30-2015 507-1197 START TIME: PROJECT NAME: LOGGED BY: END TIME: :10 Stelts DRILLING METHOD & RIG: Direct Push PROJECT ADDRESS: tackson St. Glandale, CA BOREHOLE DIAMETER: 11/11 Iruck 233-237+241 1, 11 DEPTH TO GROUNDWATER: EX SAMPLING METHOD: TERMINAL DEPTH: PID CAL GAS/DATE: Asphalt 2 COMPLETION LITHOLOGY TIME BC SAMPLE ID RSI DEPTH PID USCS 1 2 3 Sitty Savel Savel is five to med yellowish red, damp Shall ant. gravel B1-5 1:50 0.0 5 -6 -7 David Poorly Graded Gand is five to med H. brown, damp 8 -9 B1-10 11:55

BC - BLOW COUNT R - RECOVERY SI - SAMPLE INTERVAL

BORING: B**BORING LOG** CANDERSEN ENVIRONMENTAL LOGGED BY: PAGE 2 OF 2 Lowell Stelts PROJECT NO .: 1507-1197 PROJECT NAME: PROJECT ADDRESS 5 Backfulled with hydrated bestow, te NOTES: OENd bare at 20 (2) No oders (3) No visible stains and patched. (PNO water COMPLETION SAMPLE ID LITHOLOGY TIME BC RBI DEPTH PID USCS L10 11 12 ) Savel Poorly Graded Savel is five to med It. brown, damp W/grove1 13. ·D 14. 7:00 B1-15 0.1 - 15 -16-17. Save Poorly Graded Save to five to med H. brown, domp W/gravel 18-19 B1-20 :10 BC - BLOW COUNT R - RECOVERY SI - SAMPLE INTERVAL

**BORING LOG** B2 BORING: CANDERSEN ENVIRONMENTAL OF 2 DATE(S) DRILLED: PROJECT NO .: PAGE / -30-2015 507-1197 PROJECT NAME: LOGGED BY: owell Stells DIVECT PUSH PROJECT ADDRESS: N tockon St. Glendale, C BOREHOLE DIAMÉTER: CA. Truck 233-237+241 1/2 = ING CONTRACTOR DRILLE DRILLER DEPTH TO GROUNDWATER: PID CAL GAS/DATE: SAMPLING METHOD: TERMINAL DEPTH: 8 Acctat COMPLETION SAMPLE ID DEPTH PID USCS Asphatt LITHOLOGY TIME BC RISI 2 Sand Poorly Graded Sand 15 have tomed Horown & yellowish red damp possible Fill) 3 B2-5' 0.2 1:40 5 6 7 . ) and Poorly Grode & Sand is five ture & Horown, damp Wgrave ( 8 -B2-10

BC - BLOW COUNT R - RECOVERY SI - SAMPLE INTERVAL

B2 **BORING LOG** BORING: EANDERSEN ENVIRONMENTAL LOGGED BY: Lowell PAGE 2 OF 2 PROJECT NO .: Stells 507-1197 PROJECT NAME: PROJECT ADDRESS: NOTES: @Bore terminated at 18' (A)No water due to deuse soil conditions (refusal) Backfilled with hydrated besterite and patched. oders VISIBLE STAINS. LITHOLOGY COMPLETION RSI DEPTH PID USCS TIME BC SAMPLE ID L.10 11 12. 13-)and Poorly Graded Sand 13 hove tomed Horann, domp Wgravel 14 1 SM. 6" leuse of Sitty Saved Julianish red in color fictionish red in color have saved, damp B2-15 7:50 15. 0.100 16 Sard Poorly Graded Gowd ishive to med Horaww, damp W/ gravel SP, 17. 5.2 B2-18 8:00 18 m 19. 20

BC - BLOW COUNT R - RECOVERY SI - SAMPLE INTERVAL

B3 **BORING LOG BORING: EANDERSEN** ENVIRONMENTAL OF 2 PROJECT NO .: DATE(S) DRILLED: PAGE\_ 30-2015 1507 1197 END TIME: 9:00 START TIME: PROJECT NAME: LOGGED BY: Stella LOWE Direct Push PROJECT ADDRESS: BOREHOLE DIAMETER: Truck 133-237+241 N. Tock 305 5+ 11 wite. PID CAL GAS/DATE: ETHOD TERMINAL DEPTH: treta SAMPLE ID RSI DEPTH PID USCS LITHOLOGY COMPLETION TIME BC Aspha Sitty Saurd Sourd is five yellowish red, damp (possible fill) 2 5/1 3 . Sand Poorly Graded Sand is have to med Horows, domp B3-5' 0.3 1:45 5 -6 -·6t 7 -Sard Pooriy Graded Sand is have to med H brown, damp 8 -9. Maravel :50 3 B3-10

BC - BLOW COUNT R - RECOVERY SI - SAMPLE INTERVAL

**BORING LOG BORING:** B3 EANDERSEN ENVIRONMENTAL PAGE 2 OF 2 LOGGED BY: LOWC IN Stefts PROJECT NO .: 1507-1197 PROJECT NAME: DNo water Backfilled with hydrated bestonite and patched OENd bore at 15 due to refusal (dense soil coud.) NOTES: @ No oders 3 No VISIBLE STAINS SAMPLE ID R SI DEPTH PID USCS LITHOLOGY COMPLETION BC TIME £ 10 Sand Poorly Graded Sand is five tomed H brown, damp W/gravel 12 13 9:00 B3-15' 0.2 15-XX refusal at 15 due to deuse Soil conditions. 16. 17. 18. 19 20

BC - BLOW COUNT R - RECOVERY SI - SAMPLE INTERVAL

# **APPENDIX C**

## LABORATORY TESTING



#### C.1 LABORATORY TESTING

The laboratory testing program performed by GeoPentech for the proposed project site included the following tests: moisture content, dry density, sieve analysis, wash analysis, direct shear, compaction, R-value, and corrosion. The geotechnical testing was conducted at the laboratory facilities of AP Engineering and Testing, Inc. in Pomona, California. The tests were performed in general accordance with applicable procedures of ASTM and the State of California Department of Transportation, Standard Test Methods (DOT CA). The results of the laboratory testing, provided in a letter by AP Engineering & Testing, Inc. dated July 24, 2017, are included in this Appendix and are summarized in Table C-1 and on the boring logs in Appendix A. GeoPentech has reviewed the results of the laboratory testing and finds them acceptable. Brief descriptions of each test are presented in the following sections.

#### C.1.1 Moisture Content and Dry Density

For selected Modified California samples, the dry unit weight (in units of pounds-per-cubic-foot) and field moisture content (%) were measured in general accordance with ASTM D2937 and ASTM D2216, respectively, or with ASTM D7263.

#### C.1.2 Sieve Analysis and Wash Analysis

For selected samples, the particle-size distribution was determined by sieve analysis in general accordance with ASTM D6913. Sieve sizes ranged from  $\frac{3}{4}$  in to 75  $\mu$ m (No. 200).

For other selected samples, the percentage of fines (material passing the No. 200 sieve) was measured by wash analysis in accordance with ASTM D1140.

#### C.1.3 Direct Shear

Direct shear tests were performed on selected Modified California samples in accordance with ASTM D3080 to measure peak and ultimate strength parameters. Shear stress and sample deformation were monitored throughout the tests.

#### C.1.4 Compaction

Modified Proctor compaction testing was performed on a selected bulk soil sample. This test measures the effect of soil moisture content on the density achievable from compaction. By compacting soil samples with varying moisture contents, the maximum density achievable and associated "optimum" moisture content may be determined. The testing was conducted in general accordance with ASTM D1557 Method A.

#### C.1.5 R-value

R-value testing was performed on selected samples to provide information for paving design. The test evaluates the resistance (R-value) of a compacted soil sample through use of a stabilometer. The testing was conducted in accordance with ASTM D2844.

#### C.1.6 Corrosion Tests

Soil samples were tested for electrical resistivity, pH, sulfate content, and chloride content. These tests were performed in general accordance with DOT CA test methods 643 (electrical resistivity and pH), 417 (sulfate content), and 422 (chloride content). The test results were used to evaluate the corrosivity potential of the soil on underground improvements associated with the proposed structure.



#### TABLE C-1 SUMMARY OF SOIL LABORATORY TESTING 223-241 N. JACKSON ST.

| l             | Location                | l          | Classification | Initia            | al Cond                 | ition                 | Lin          | nits             | G          | Gradatio | n         | Di                           | rect She                    | ear                             | Comp             | action                     |                        | EI                          | R-value              | Chem              |
|---------------|-------------------------|------------|----------------|-------------------|-------------------------|-----------------------|--------------|------------------|------------|----------|-----------|------------------------------|-----------------------------|---------------------------------|------------------|----------------------------|------------------------|-----------------------------|----------------------|-------------------|
| Boring Number | Sample/ Specimen Number | Depth (ft) | USCS Symbol    | Water Content (%) | Total Unit Weight (pcf) | Dry Unit Weight (pcf) | Liquid Limit | Plasticity Index | Gravel (%) | Sand (%) | Fines (%) | Normal Stress Sequence (ksf) | Friction Angle @ Peak (deg) | Strength Intercept @ Peak (ksf) | ASTM Test Method | Max. Dry Unit Weight (pcf) | Opt. Water Content (%) | Expansion Index, EI @ 50% S | R-value (ASTM D2844) | Corrosivity Suite |
| B-1           | Bulk-1                  | 0-5        | SM             |                   |                         |                       |              |                  |            |          |           |                              |                             |                                 |                  |                            |                        |                             |                      | Comp.             |
| B-1           | 2b                      | 8.5        | SP             | 1.7               | 107.7                   | 105.9                 |              |                  |            |          |           | 1.0,<br>2.0, 3.0             | 38                          | 200                             |                  |                            |                        |                             |                      |                   |
| B-1           | 3                       | 10         | SW             |                   |                         |                       |              |                  | 18.0       | 78.0     | 4.0       | ,                            |                             |                                 |                  |                            |                        |                             |                      |                   |
| B-1           | 4b                      | 13.5       | SM             | 2.4               | 120.2                   | 117.4                 |              |                  |            |          |           |                              |                             |                                 |                  |                            |                        |                             |                      |                   |
| B-1           | 5                       | 15         | SM             |                   |                         |                       |              |                  |            |          | 16.3      |                              |                             |                                 |                  |                            |                        |                             |                      |                   |
| B-1           | 6b                      | 21         | SW             | 1.9               | 121.4                   | 119.1                 |              |                  |            |          |           |                              |                             |                                 |                  |                            |                        |                             |                      |                   |
| B-1           | 8b                      | 31         | SW             | 2.0               | 103.0                   | 101.0                 |              |                  |            |          |           |                              |                             |                                 |                  |                            |                        |                             |                      |                   |
| B-1           | 10b                     | 41         | SW-SM to SP-SM | 4.4               | 116.4                   | 111.5                 |              |                  |            |          |           |                              |                             |                                 |                  |                            |                        |                             |                      |                   |
| B-1           | 12b                     | 51         | SW-SM          | 4.9               | 112.8                   | 107.5                 |              |                  |            |          |           |                              |                             |                                 |                  |                            |                        |                             |                      |                   |
|               |                         |            |                |                   |                         |                       |              |                  |            |          |           |                              |                             |                                 |                  |                            |                        |                             |                      |                   |
| B-2           | Bulk-1                  | 0-5        | SM             |                   |                         |                       |              |                  |            |          |           |                              |                             |                                 | ASTM D1557-A     | 126.4                      | 8.8                    |                             |                      |                   |
| B-2           | 1b                      | 6          | SM             | 7.2               | 117.8                   | 109.9                 |              |                  |            |          |           |                              |                             |                                 |                  |                            |                        |                             |                      |                   |
| B-2           | 2                       | 7.5        | SP             |                   |                         |                       |              |                  | 9.0        | 89.0     | 2.0       |                              |                             |                                 |                  |                            |                        |                             |                      |                   |
| B-2           | 3b                      | 11         | SP             | 2.5               | 104.3                   | 101.8                 |              |                  |            |          |           | 1.0,<br>2.0, 3.0             | 37                          | 150                             |                  |                            |                        |                             |                      |                   |
| B-2           | 4                       | 12.5       | SM             |                   |                         |                       |              |                  |            |          | 25.3      |                              |                             |                                 |                  |                            |                        |                             |                      |                   |
| B-2           | 5b                      | 16         | SW             | 9.7               | 131.7                   | 120.1                 |              |                  |            |          |           |                              |                             |                                 |                  |                            |                        |                             |                      |                   |
| B-2           | 7b                      | 26         | SW-SM          | 2.2               | 109.5                   | 107.1                 |              |                  |            |          |           |                              |                             |                                 |                  |                            |                        |                             |                      |                   |
|               |                         |            | ·              |                   |                         |                       |              | -                |            |          |           |                              |                             |                                 |                  |                            |                        |                             |                      |                   |

#### TABLE C-1 SUMMARY OF SOIL LABORATORY TESTING 223-241 N. JACKSON ST.

|               | Location                | 1          | Classification | Initia            | al Cond                 | ition                 | Lin          | nits             | Ģ          | Gradatio | n         | Dir                          | rect She                    | ear                             | Comp             | action                     |                        | EI                          | R-value              | Chem              |
|---------------|-------------------------|------------|----------------|-------------------|-------------------------|-----------------------|--------------|------------------|------------|----------|-----------|------------------------------|-----------------------------|---------------------------------|------------------|----------------------------|------------------------|-----------------------------|----------------------|-------------------|
| Boring Number | Sample/ Specimen Number | Depth (ft) | USCS Symbol    | Water Content (%) | Total Unit Weight (pcf) | Dry Unit Weight (pcf) | Liquid Limit | Plasticity Index | Gravel (%) | Sand (%) | Fines (%) | Normal Stress Sequence (ksf) | Friction Angle @ Peak (deg) | Strength Intercept @ Peak (ksf) | ASTM Test Method | Max. Dry Unit Weight (pcf) | Opt. Water Content (%) | Expansion Index, EI @ 50% S | R-value (ASTM D2844) | Corrosivity Suite |
| B-3           | Bulk 1                  | 0-5        | SM             |                   |                         |                       |              |                  |            |          |           |                              |                             |                                 |                  |                            |                        |                             | 75                   |                   |
| B-3           | 1                       | 5          | SP-SM to SW-SM |                   |                         |                       |              |                  |            |          | 9.2       |                              |                             |                                 |                  |                            |                        |                             |                      |                   |
| B-3           | 2b                      | 8.5        | SP-SM to SW-SM | 3.6               | 102.2                   | 98.7                  |              |                  |            |          |           | 1.0,<br>2.0, 3.0             | 36                          | 250                             |                  |                            |                        |                             |                      |                   |
| B-3           | 3                       | 10         | SM             |                   |                         |                       |              |                  |            |          | 30.6      |                              |                             |                                 |                  |                            |                        |                             |                      |                   |
| B-3           | 4b                      | 13.5       | SM             | 5.8               | 122.1                   | 115.4                 |              |                  |            |          |           |                              |                             |                                 |                  |                            |                        |                             |                      |                   |
| B-3           | 6b                      | 21         | SP             | 3.6               | 105.6                   | 101.9                 |              |                  |            |          |           |                              |                             |                                 |                  |                            |                        |                             |                      |                   |
| B-3           | 8b                      | 31         | SP to SP-SM    | 4.0               | 122.8                   | 118.1                 |              |                  |            |          |           |                              |                             |                                 |                  |                            |                        |                             |                      |                   |



A Certified DBE/MBE/SBE Company

July 24, 2017

To: GeoPentech, Inc. 5251 California Ave, Suite 210 Irvine, California 92617

Attention: Alek Harounian, P.E.

Subject: Laboratory Test Report Project Name: Jackson Street Apartments (JSA) Project No.: 17064A

Dear Alek,

This letter is to certify that AP Engineering and Testing has performed laboratory soil tests for the subject project. The laboratory testing program as requested by you consisted of:

- 11 Moisture Content & Density (ASTM D 2216 & D 2937)
- 1 Corrosion Suite (CTM 417, 422 & 643)
- 4 Percent Passing #200 Sieve (ASTM D 1140)
- 1 Modified Proctor Compaction (ASTM D 1557)
- 2 Sieve Analysis (ASTM D 6913)
- 1 R-Value (ASTM D 2844)
- 3 Direct Shear (ASTM D 3080)

All tests were performed in accordance with the applicable standards as indicated above under the supervision of a registered geotechnical engineer. Attached please find the test results.

We appreciate the opportunity to be of service to you. Should you have any questions, please call our office at your convenience.

Respectfully submitted,

AP Engineering and Testing, Inc. Certificate No. 10130

Apichart Phukunhaphan, P.E., G.E. Principal Engineer

Distribution: 1 Addressee

Attachments: Laboratory Test Results





# MOISTURE AND DENSITY TEST RESULTS

Client: GeoPentech

AP Lab No.: 17-0725

Project Name: Jackson Street Apartments (JSA)

Project No.: 17064A

Date: 07/19/17

| Boring<br>No. | Sample<br>No. | Sample<br>Depth (ft.) | Moisture<br>Content (%) | Dry Density<br>(pcf) |
|---------------|---------------|-----------------------|-------------------------|----------------------|
| B-1           | 4b            | 13.5                  | 2.4                     | 117.4                |
| B-1           | 6b            | 21                    | 1.9                     | 119.1                |
| B-1           | 8b            | 31                    | 2.0                     | 101.0                |
| B-1           | 10b           | 41                    | 4.4                     | 111.5                |
| B-1           | 12b           | 51                    | 4.9                     | 107.5                |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |



# MOISTURE AND DENSITY TEST RESULTS

Client: GeoPentech

AP Lab No.: 17-0725

Project Name: Jackson Street Apartments (JSA)

Project No.: 17064A

Date: 07/19/17

| Boring<br>No. | Sample<br>No. | Sample<br>Depth (ft.) | Moisture<br>Content (%) | Dry Density<br>(pcf) |
|---------------|---------------|-----------------------|-------------------------|----------------------|
| B-2           | 1b            | 6                     | 7.2                     | 109.9                |
| B-2           | 5b            | 16                    | 9.7                     | 120.1                |
| B-2           | 7b            | 26                    | 2.2                     | 107.1                |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |
|               |               |                       |                         |                      |



# MOISTURE AND DENSITY TEST RESULTS

Client: GeoPentech

AP Lab No.: 17-0725

Project Name: Jackson Street Apartments (JSA)

Project No.: 17064A

Date: 07/19/17

| Boring | Sample | Sample      | Moisture    | Dry Density |
|--------|--------|-------------|-------------|-------------|
| No.    | No.    | Depth (ft.) | Content (%) | (pcf)       |
| B-3    | 4b     | 13.5        | 5.8         | 115.4       |
| B-3    | 6b     | 21          | 3.6         | 101.9       |
| B-3    | 8b     | 31          | 4.0         | 118.1       |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |
|        |        |             |             |             |



## PERCENT PASSING NO. 200 SIEVE ASTM D1140

| Client:         | GeoPentech                      | AP Lab No.: | 17-0725  |
|-----------------|---------------------------------|-------------|----------|
| Project Name:   | Jackson Street Apartments (JSA) | Test Date:  | 07/14/17 |
| Project Number: | 17064A                          |             |          |

| Boring | Sample | Depth | Percent Fines |
|--------|--------|-------|---------------|
| No.    | No.    | (ft)  | (%)           |
| B-1    | 5      | 15    | 16.3          |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |



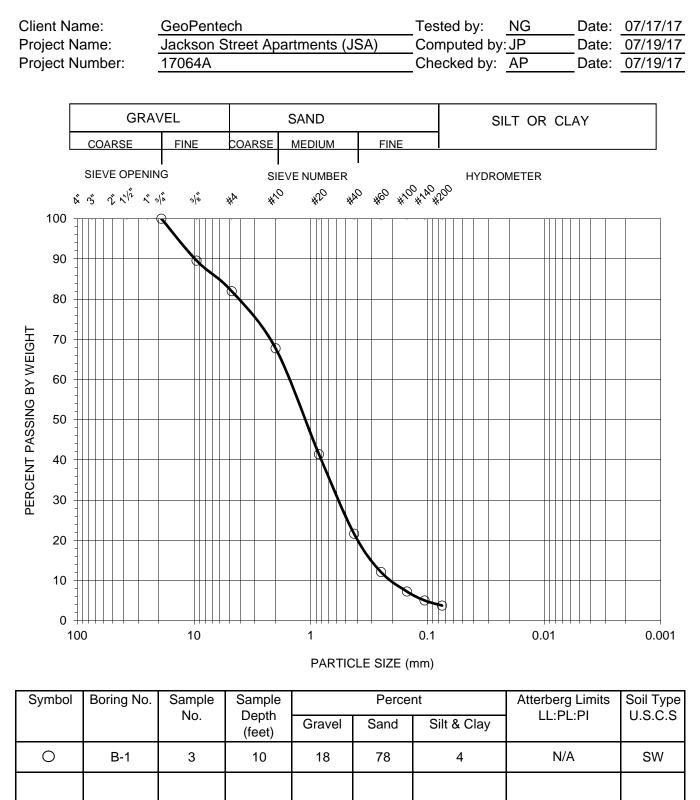
## PERCENT PASSING NO. 200 SIEVE ASTM D1140

| Client:         | GeoPentech                      | AP Lab No.: | 17-0725  |
|-----------------|---------------------------------|-------------|----------|
| Project Name:   | Jackson Street Apartments (JSA) | Test Date:  | 07/14/17 |
| Project Number: | 17064A                          |             |          |

| Boring | Sample | Depth | Percent Fines |
|--------|--------|-------|---------------|
| No.    | No.    | (ft)  | (%)           |
| B-2    | 4      | 12.5  | 25.3          |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |



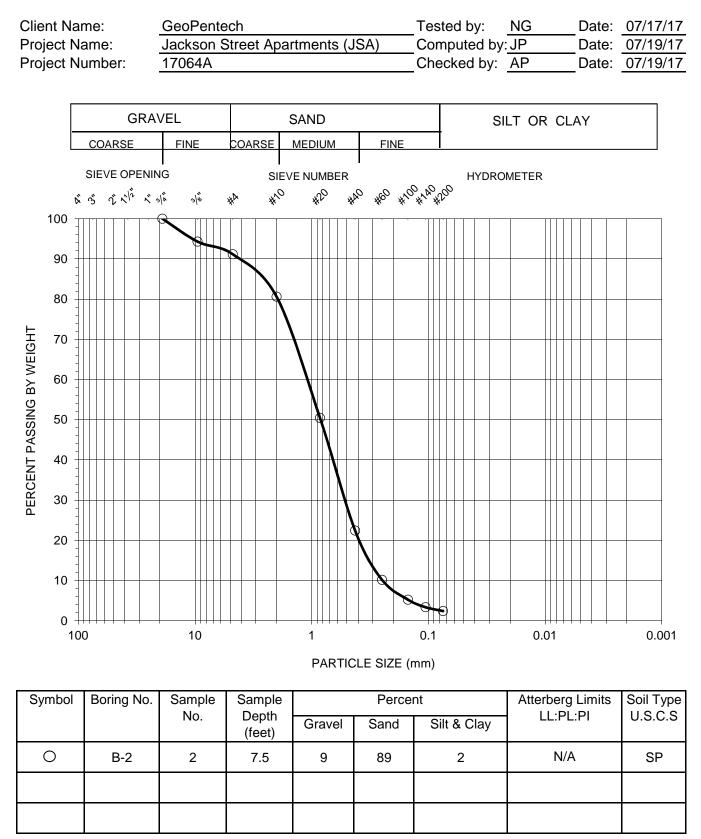
## PERCENT PASSING NO. 200 SIEVE ASTM D1140


| Client:         | GeoPentech                      | AP Lab No.: | 17-0725  |
|-----------------|---------------------------------|-------------|----------|
| Project Name:   | Jackson Street Apartments (JSA) | Test Date:  | 07/14/17 |
| Project Number: | 17064A                          |             |          |

| Boring | Sample | Depth | Percent Fines |
|--------|--------|-------|---------------|
| No.    | No.    | (ft)  | (%)           |
| B-3    | 1      | 5     | 9.2           |
| B-3    | 3      | 10    | 30.6          |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |
|        |        |       |               |



AP Engineering and Testing, Inc. DBE|MBE|SBE 2607 Pomona Boulevard | Pomona, CA 91768 t. 909.869.6316 | f. 909.869.6318 | www.aplaboratory.com


#### GRAIN SIZE DISTRIBUTION CURVE ASTM D 6913





AP Engineering and Testing, Inc. DBE|MBE|SBE 2607 Pomona Boulevard | Pomona, CA 91768 t. 909.869.6316 | f. 909.869.6318 | www.aplaboratory.com

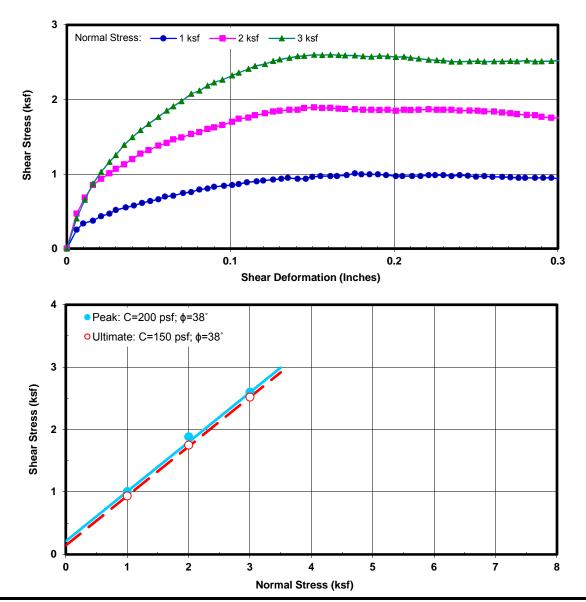
#### GRAIN SIZE DISTRIBUTION CURVE ASTM D 6913





#### AP Engineering and Testing, Inc.

DBE|MBE|SBE 2607 Pomona Boulevard | Pomona, CA 91768 t. 909.869.6316 | f. 909.869.6318 | www.aplaboratory.com


## DIRECT SHEAR TEST RESULTS

#### ASTM D 3080

| Project Name:          | Jackson Street Apartments (JSA) |             |     |  |  |  |
|------------------------|---------------------------------|-------------|-----|--|--|--|
| Project No.:           | 17064A                          |             |     |  |  |  |
| Boring No.:            | B-1                             |             |     |  |  |  |
| Sample No.:            | 2b                              | Depth (ft): | 8.5 |  |  |  |
| Sample Type:           | Mod. Cal.                       |             |     |  |  |  |
| Soil Description:      | Sand w/silt & gravel            |             |     |  |  |  |
| <b>Test Condition:</b> | Inundated Shear Type: Regular   |             |     |  |  |  |
|                        |                                 |             |     |  |  |  |

| LS | Date: | 07/14/17 |
|----|-------|----------|
| JP | Date: | 07/19/17 |
| AP | Date: | 07/19/17 |
|    | JP    | JP Date: |

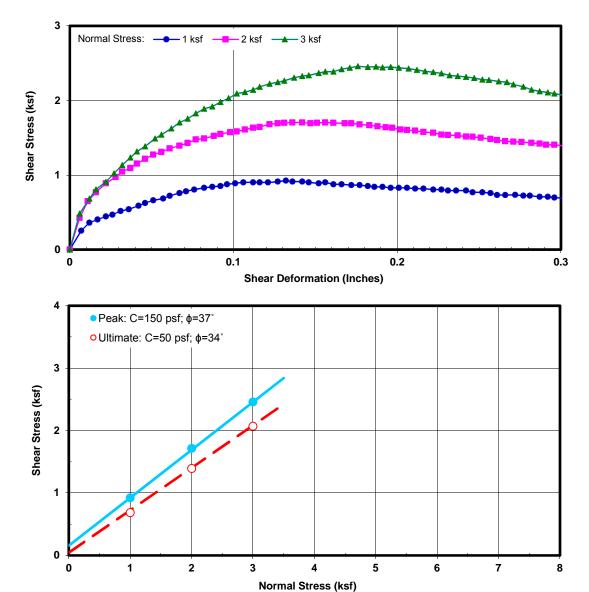
| Γ | Wet         | Dry         | Initial     | Final       | Initial Degree | Final Degree | Normal | Peak         | Ultimate     |
|---|-------------|-------------|-------------|-------------|----------------|--------------|--------|--------------|--------------|
|   | Unit Weight | Unit Weight | Moisture    | Moisture    | Saturation     | Saturation   | Stress | Shear        | Shear        |
|   | (pcf)       | (pcf)       | Content (%) | Content (%) | (%)            | (%)          | (ksf)  | Stress (ksf) | Stress (ksf) |
|   |             |             |             |             |                | 1            | 1.008  | 0.936        |              |
|   | 107.7       | 105.9       | 1.7         | 19.8        | 8              | 90           | 2      | 1.884        | 1.752        |
|   | -           |             |             |             |                |              | 3      | 2.599        | 2.520        |





#### AP Engineering and Testing, Inc.

DBE|MBE|SBE 2607 Pomona Boulevard | Pomona, CA 91768 t. 909.869.6316 | f. 909.869.6318 | www.aplaboratory.com


#### DIRECT SHEAR TEST RESULTS

#### **ASTM D 3080**

| Jackson Street Apartments (JSA) |                                  |                                                                            |  |  |  |  |
|---------------------------------|----------------------------------|----------------------------------------------------------------------------|--|--|--|--|
| 17064A                          | 17064A                           |                                                                            |  |  |  |  |
| B-2                             |                                  |                                                                            |  |  |  |  |
| 3b                              | Depth (ft):                      | 11                                                                         |  |  |  |  |
| Mod. Cal.                       | -                                |                                                                            |  |  |  |  |
| Silty Sand w/gravel             |                                  |                                                                            |  |  |  |  |
| Inundated Shear Type: Regular   |                                  |                                                                            |  |  |  |  |
|                                 | 17064A<br>B-2<br>3b<br>Mod. Cal. | 17064A<br>B-2<br>3b <b>Depth (ft):</b><br>Mod. Cal.<br>Silty Sand w/gravel |  |  |  |  |

| LS | Date: | 07/14/17 |
|----|-------|----------|
| JP | Date: | 07/19/17 |
| AP | Date: | 07/19/17 |
|    | JP    | JP Date: |

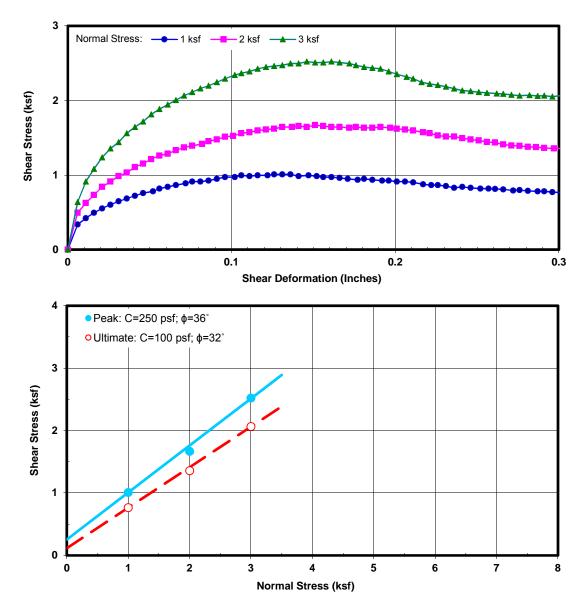
| ſ | Wet         | Dry         | Initial     | Final       | Initial Degree | Final Degree | Normal | Peak         | Ultimate     |
|---|-------------|-------------|-------------|-------------|----------------|--------------|--------|--------------|--------------|
|   | Unit Weight | Unit Weight | Moisture    | Moisture    | Saturation     | Saturation   | Stress | Shear        | Shear        |
|   | (pcf)       | (pcf)       | Content (%) | Content (%) | (%)            | (%)          | (ksf)  | Stress (ksf) | Stress (ksf) |
| ſ |             |             |             |             |                | 1            | 0.924  | 0.686        |              |
|   | 104.3       | 101.8       | 2.5         | 22.0        | 10             | 90           | 2      | 1.716        | 1.392        |
|   |             |             |             |             |                |              | 3      | 2.458        | 2.070        |





#### AP Engineering and Testing, Inc.

DBE|MBE|SBE 2607 Pomona Boulevard | Pomona, CA 91768 t. 909.869.6316 | f. 909.869.6318 | www.aplaboratory.com


### DIRECT SHEAR TEST RESULTS

#### ASTM D 3080

| Jackson Street Apartments (JSA) |                                                |                                |  |  |  |  |
|---------------------------------|------------------------------------------------|--------------------------------|--|--|--|--|
| 17064A                          |                                                |                                |  |  |  |  |
| B-3                             |                                                |                                |  |  |  |  |
| 2b                              | Depth (ft):                                    | 8.5                            |  |  |  |  |
| Mod. Cal.                       |                                                |                                |  |  |  |  |
| Silty Sand                      |                                                |                                |  |  |  |  |
| Inundated Shear Type: Regular   |                                                |                                |  |  |  |  |
|                                 | 17064A<br>B-3<br>2b<br>Mod. Cal.<br>Silty Sand | 17064AB-32bMod. Cal.Silty Sand |  |  |  |  |

| Tested By:   | LS | Date: | 07/14/17 |
|--------------|----|-------|----------|
| Computed By: | JP | Date: | 07/19/17 |
| Checked by:  | AP | Date: | 07/19/17 |

| Wet         | Dry         | Initial     | Final       | Initial Degree | Final Degree | Normal | Peak         | Ultimate     |
|-------------|-------------|-------------|-------------|----------------|--------------|--------|--------------|--------------|
| Unit Weight | Unit Weight | Moisture    | Moisture    | Saturation     | Saturation   | Stress | Shear        | Shear        |
| (pcf)       | (pcf)       | Content (%) | Content (%) | (%)            | (%)          | (ksf)  | Stress (ksf) | Stress (ksf) |
|             |             |             |             |                | 1            | 1.008  | 0.765        |              |
| 102.2       | 98.7        | 3.6         | 23.8        | 14             | 91           | 2      | 1.668        | 1.356        |
|             |             |             |             |                |              | 3      | 2.520        | 2.064        |



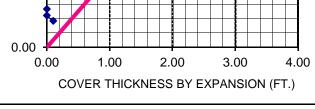


AP Engineering and Testing, Inc. DBE|MBE|SBE 2607 Pomona Boulevard | Pomona, CA 91768 t. 909.869.6316 | f. 909.869.6318 | <u>www.aplaboratory.com</u>

|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                     | СОМРА                                  | CTION .                                                                                    | TEST                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Client:<br>Project Name:<br>Project No. :<br>Boring No.:<br>Sample No.:<br>Visual Sample D                                                                                                                                              | Project Name:Jackson Street ApartmerProject No. :17064ABoring No.:B-2                                                                                                                                                                                               |                                        | Tested By:AMCalculated By:JPChecked By:APDepth(ft.):0-5Compaction MethodPreparation Method |                             |                      | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 07/17/17<br>07/19/17<br>07/19/17 |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                     |                                        |                                                                                            |                             |                      | X ASTM D15<br>ASTM D69<br>Moist<br>X Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |
| Wt. Comp. Soil<br>Wt. of Mold (g<br>Net Wt. of Soil                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     | 3794<br>1861<br>1933                   | 3892<br>1861<br>2031                                                                       | <u>3948</u><br>1861<br>2087 | 3894<br>1861<br>2033 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |
| Container No.<br>Wt. of Containe                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     | 143.62                                 |                                                                                            | 143.21                      | 143.39               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |
| Wet Wt. of Soil                                                                                                                                                                                                                         | + Cont. (gm.)                                                                                                                                                                                                                                                       | 324.71<br>315.61                       | 147.06<br>344.08<br>330.42                                                                 | 328.62<br>312.61            | 324.00<br>305.45     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |
| Moisture Conte<br>Wet Density (po                                                                                                                                                                                                       | nt (%)                                                                                                                                                                                                                                                              | 5.29<br>127.84                         | 7.45<br>134.33                                                                             | 9.45<br>138.03              | 11.45<br>134.42      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |
|                                                                                                                                                                                                                                         | f)<br>Maximum Dry Density (pcf)<br>ty w/ Rock Correction (pcf)                                                                                                                                                                                                      |                                        | 125.01<br>Optimum                                                                          | =                           |                      | e Content (%)<br>Correction (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |
| Soil Passing No.<br>Mold : 4 in. (10<br>Layers : 5 (Fix<br>Blows per layer :<br>METHOD B: Per<br>Soil Passing 3/8<br>Mold : 4 in. (10<br>Layers : 5 (Fix<br>Blows per layer :<br>METHOD C: Per<br>Soil Passing 3/4<br>Mold : 6 in. (15) | rcent of Oversize: 4.0%<br>4 (4.75 mm) Sieve<br>1.6 mm) diameter<br>re)<br>2 25 (twenty-five)<br>rcent of Oversize: N/A<br>in. (9.5 mm) Sieve<br>1.6 mm) diameter<br>re)<br>2 25 (twenty-five)<br>rcent of Oversize: N/A<br>in. (19.0 mm) Sieve<br>2.4 mm) diameter | 140<br>130<br>130<br>120<br>110<br>110 |                                                                                            |                             |                      | 100% Saturation (<br>100% Saturati | 2 S.G.= 2.7                      |
| Layers: 5 (Fiv<br>Blows per layer:                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     | 0                                      |                                                                                            | 10                          | 20<br>Moisture (%)   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                |



#### AP Engineering and Testing, Inc. DBE | MBE | SBE 2607 Pomona Boulevard | Pomona, CA 91768 t. 909.869.6316 | f. 909.869.6318 | www.aplaboratory.com


#### **R-VALUE TEST DATA ASTM D2844**

|                                    |                 | ASTINIL          | 52044                         |          |         |                   |          |
|------------------------------------|-----------------|------------------|-------------------------------|----------|---------|-------------------|----------|
| Project Name: Jackson Street       | Apartment       | s (JSA)          | Teste                         | ed By:   | ę       | ST Date:07/1      | 3/17     |
| Project Number: 17064A             |                 |                  | Compu                         | ited By: | k       | KM Date: 07/1     | 5/17     |
| Boring No.: B-3                    |                 |                  | Check                         | ed By:   | A       | AP Date: 07/1     | 9/17     |
| Sample Type: Bulk-1                |                 | Depth (ft.):     | 0-5                           |          |         |                   |          |
| Location: N/A                      |                 |                  |                               |          |         |                   |          |
| Soil Description: Sand w/silt      |                 |                  |                               |          |         |                   |          |
| Mold Number                        | А               | С                | В                             |          |         |                   |          |
| Water Added, g                     | 30              | 38               | 47                            |          |         | By Exudation:     | 75       |
| Compact Moisture(%)                | 9.0             | 9.7              | 10.6                          |          |         |                   |          |
| Compaction Gage Pressure, psi      | 190             | 190              | 190                           |          | ПП      |                   |          |
| Exudation Pressure, psi            | 739             | 433              | 140                           |          | R-VALUE | By Expansion:     | *N/A     |
| Sample Height, Inches              | 2.5             | 2.5              | 2.5                           |          | 2-      |                   |          |
| Gross Weight Mold, g               | 3043            | 3047             | 3057                          |          |         |                   |          |
| Tare Weight Mold, g                | 1968            | 1965             | 1967                          |          |         | At Equilibrium:   | 75       |
| Net Sample Weight, g               | 1075            | 1082             | 1090                          |          |         | (by Exudation)    |          |
| Expansion, inchesx10 <sup>-4</sup> | 3               | 0                | 0                             |          |         |                   |          |
| Stability 2,000 (160 psi)          | 11/19           | 12/21            | 13/25                         |          |         |                   |          |
| Turns Displacement                 | 4.42            | 5.00             | 5.22                          |          |         |                   |          |
| R-Value Uncorrected                | 81              | 77               | 72                            |          | ks      | Gf = 1.34, and 0. | 6 %      |
| R-Value Corrected                  | 81              | 77               | 72                            |          | Remarks | Retained on the   |          |
| Dry Density, pcf                   | 119.6           | 119.6            | 119.5                         |          | Rei     | *Not Applicabl    |          |
| Traffic Index                      | 8.0             | 8.0              | 8.0                           |          |         |                   |          |
| G.E. by Stability                  | 0.37            | 0.44             | 0.53                          |          |         |                   |          |
| G.E. by Expansion                  | 0.10            | 0.00             | 0.00                          |          |         |                   |          |
|                                    |                 |                  |                               |          |         |                   | <b>I</b> |
|                                    |                 | 100              | 4.00                          |          |         |                   |          |
|                                    | <mark>}}</mark> | 90               | Û.                            |          |         |                   | 4        |
|                                    |                 | 80               | ER (FT.)                      |          |         |                   |          |
|                                    |                 | 00               |                               |          |         |                   |          |
|                                    |                 | 70               | Σ                             |          |         |                   |          |
|                                    |                 | 60               | ILO                           |          |         |                   |          |
|                                    |                 | Ш                | IAB                           |          |         |                   |          |
|                                    |                 | ЭЛТРЛ-Ж<br>50 40 | ່∽ 2.00<br>≻                  | +        |         |                   |          |
| └── <b>│││││</b>                   | <b>  </b>       | 40 Å             | ы<br>С                        |          |         |                   |          |
|                                    |                 |                  | E S                           |          |         |                   |          |
|                                    |                 | 30               | 오<br>오<br>오<br>1.00           |          |         |                   |          |
| ······ <mark></mark> ·······       | ╞               | 20               | COVER THICKNESS BY STABILOMET |          |         |                   |          |
|                                    |                 | 10               | K                             |          |         |                   | +        |
|                                    |                 | 10               | NO<br>NO                      |          |         |                   |          |
| ┝─┼┼┼┦─┦                           | <b>├──</b> ┤    | 0                | 0.00                          |          |         |                   |          |

0

**EXUDATION PRESSURE - PSI** 

800 700 600 500 400 300 200 100





## **CORROSION TEST RESULTS**

Client Name: GeoPentech

Date:

AP Job No.:

17-0725 07/14/17

Project No.:

17064A

Project Name: Jackson Street Apartments (JSA)

Sulfate Content Soil Type Chloride Content Boring Sample Depth Minimum pН No. (feet) Resistivity (ohm-cm) No. (ppm) (ppm) 919 7.9 B-1 Bulk-1 SM 114 0-51089

NOTES: Resistivity Test and pH: California Test Method 643 Sulfate Content : California Test Method 417

> Chloride Content : California Test Method 422

ND = Not Detectable

NA = Not Sufficient Sample

NR = Not Requested